虽然软大间隔聚类(Soft large margin clustering,SLMC)相比其他诸如K-Means等算法具有更优的聚类性能与某种程度的可解释性,然而当面对大规模分布存储数据时,均遭遇了同样的可扩展瓶颈,其涉及的核矩阵计算需要高昂的时间代价。消减此...虽然软大间隔聚类(Soft large margin clustering,SLMC)相比其他诸如K-Means等算法具有更优的聚类性能与某种程度的可解释性,然而当面对大规模分布存储数据时,均遭遇了同样的可扩展瓶颈,其涉及的核矩阵计算需要高昂的时间代价。消减此代价的有效策略之一是采用随机Fourier特征变换逼近核函数,而逼近精度所依赖的特征维度常常过高,隐含着可能过拟合的风险。本文将稀疏性嵌入核SLMC,结合交替方向乘子法(Alternating direction method of multipliers,ADMM),给出了一个分布式稀疏软大间隔聚类算法(Distributed sparse SLMC,DS-SLMC)来克服可扩展问题,同时通过稀疏化获得更好的可解释性。展开更多
Carbide slag was used as an activator to improve the activity of anhydrous phosphogypsum.Carbide slag could greatly improve the mechanical strength of anhydrous phosphogypsum than K_(2)SO_(4).The compressive strength ...Carbide slag was used as an activator to improve the activity of anhydrous phosphogypsum.Carbide slag could greatly improve the mechanical strength of anhydrous phosphogypsum than K_(2)SO_(4).The compressive strength of 11 wt%carbide slag and 1 wt%K_(2)SO_(4)activated anhydrous phosphogypsum increased greatly to 8.6 MPa at 3 d,and 11.9 MPa at 7 d,and 16.0 MPa at 28 d,respectively.The rate of hydration heat was accelerated and the total hydration heat was increased,and more calcium sulfate dihydrate was formed and cross-linked with other parts which improved the compressive strength of anhydrous phosphogypsum under the effects of different activators.It was indicated that carbide slag was a highly effective and cost-efficient activator.The result provides a highly effective and low-cost method which results in a novel and high value-added method for the utilization of phosphogypsum in the future.展开更多
文摘虽然软大间隔聚类(Soft large margin clustering,SLMC)相比其他诸如K-Means等算法具有更优的聚类性能与某种程度的可解释性,然而当面对大规模分布存储数据时,均遭遇了同样的可扩展瓶颈,其涉及的核矩阵计算需要高昂的时间代价。消减此代价的有效策略之一是采用随机Fourier特征变换逼近核函数,而逼近精度所依赖的特征维度常常过高,隐含着可能过拟合的风险。本文将稀疏性嵌入核SLMC,结合交替方向乘子法(Alternating direction method of multipliers,ADMM),给出了一个分布式稀疏软大间隔聚类算法(Distributed sparse SLMC,DS-SLMC)来克服可扩展问题,同时通过稀疏化获得更好的可解释性。
基金Funded by Innovation Group Fund Project of Hubei Province(No.2020CFA039)the Key Research and Development Program of Hubei Province(No.2020BCA077)。
文摘Carbide slag was used as an activator to improve the activity of anhydrous phosphogypsum.Carbide slag could greatly improve the mechanical strength of anhydrous phosphogypsum than K_(2)SO_(4).The compressive strength of 11 wt%carbide slag and 1 wt%K_(2)SO_(4)activated anhydrous phosphogypsum increased greatly to 8.6 MPa at 3 d,and 11.9 MPa at 7 d,and 16.0 MPa at 28 d,respectively.The rate of hydration heat was accelerated and the total hydration heat was increased,and more calcium sulfate dihydrate was formed and cross-linked with other parts which improved the compressive strength of anhydrous phosphogypsum under the effects of different activators.It was indicated that carbide slag was a highly effective and cost-efficient activator.The result provides a highly effective and low-cost method which results in a novel and high value-added method for the utilization of phosphogypsum in the future.