期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Centrifuge and numerical modeling of h-type anti-slide pile reinforced soil-rock mixture slope 被引量:1
1
作者 ZHANG Hao xing hao-feng +1 位作者 XUE Dao-rui TANNANT Dwayne 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1441-1457,共17页
Due to the loose structure,high porosity and high permeability of soil-rock mixture slope,the slope is unstable and may cause huge economic losses and casualties.The h-type anti-slide pile is regarded as an effective ... Due to the loose structure,high porosity and high permeability of soil-rock mixture slope,the slope is unstable and may cause huge economic losses and casualties.The h-type anti-slide pile is regarded as an effective means to prevent the instability of soilrock mixture slope.In this paper,a centrifuge model test was conducted to investigate the stress distribution of the h-type anti-slide pile and the evolution process of soil arching during the loading.A numerical simulation model was built based on the similar relationship between the centrifuge model and the prototype to investigate the influence factors of the pile spacing,anchored depth,and crossbeam stiffness,and some recommendations were proposed for its application.The results show that the bending moment distribution of the rear pile exhibits Wshaped,while for the front pile,its distribution resembles V-shaped.The soil arching evolution process during loading is gradually dissipated from bottom to top and from far to near.During the loading,the change of bending moment can be divided into three stages,namely,the stabilization stage,the slow growth stage,and the rapid growth stage.In engineering projects,the recommended values of the pile spacing,anchored depth,and crossbeam stiffness are 4.0d,2.0d,and 2.0EI,where d and EI are the diameter and bending stiffness of the h-type anti-slide pile respectively. 展开更多
关键词 Centrifugemodel test Numerical simulation h-type anti-slide pile Soil-rock mixture slop Soil arching
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部