The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and bot...The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.展开更多
Diabase dyke swarms are widespread in the East Tianshan and Beishan regions. LA-ICP-MS zircon U-Pb ages of these diabase vary from 305 Ma to 278 Ma, showing that these dykes were formed during Late Carboniferous-Early...Diabase dyke swarms are widespread in the East Tianshan and Beishan regions. LA-ICP-MS zircon U-Pb ages of these diabase vary from 305 Ma to 278 Ma, showing that these dykes were formed during Late Carboniferous-Early Permian magmatism. All diabase samples are subalkali calc-alkali, characterized by slight LREE and LILEs enrichment, and weak negative Ti, Nb and Ta anomalies. The diabase samples have positive *'Nd(t)values (〉+3), high Sr isotopic compositions (initial 87Sr/S6Sr values=0.7030-0.7097), and large variation of Pb isotopic compositions, indicating they were derived from a deplete mantle source. Regional geology and geochemistry evidences indicate that these diabase dyke swarms were generated in a lithosphere extensional setting and had the same magma sources. Initial magmas may be a mixture of depleted asthenosphere mantle and enriched lithospheric mantle during rapid magma ascending.展开更多
基金supported by Project 2012CB416803 of the State Key Fundamental Programthe National Scientific and Technological Supporting Key Projects (#2011BAB06B02)Geological Survey Project No. 1212011085060
文摘The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.
基金supported by the National Natural Science Foundation of China (No. 40973028)the Central Public-interest Scientific Institution Basal Research Fund (K1107)
文摘Diabase dyke swarms are widespread in the East Tianshan and Beishan regions. LA-ICP-MS zircon U-Pb ages of these diabase vary from 305 Ma to 278 Ma, showing that these dykes were formed during Late Carboniferous-Early Permian magmatism. All diabase samples are subalkali calc-alkali, characterized by slight LREE and LILEs enrichment, and weak negative Ti, Nb and Ta anomalies. The diabase samples have positive *'Nd(t)values (〉+3), high Sr isotopic compositions (initial 87Sr/S6Sr values=0.7030-0.7097), and large variation of Pb isotopic compositions, indicating they were derived from a deplete mantle source. Regional geology and geochemistry evidences indicate that these diabase dyke swarms were generated in a lithosphere extensional setting and had the same magma sources. Initial magmas may be a mixture of depleted asthenosphere mantle and enriched lithospheric mantle during rapid magma ascending.