The objective of this study is to investigate pollen-vegetation relationship in the Qilian Mountains. The eastern Qilian Mountains are located in the transitional zone of the Tibetan Plateau, the Loess Plateau and the...The objective of this study is to investigate pollen-vegetation relationship in the Qilian Mountains. The eastern Qilian Mountains are located in the transitional zone of the Tibetan Plateau, the Loess Plateau and the arid region of Northwest China; which is one of the key areas of global environmental change. A total of 13 surface pollen samples from main vegetation have been collected. Pollen percentages were calculated in all samples. In order to reveal the relationship between pollen composition and the vegetation types from which the soil samples have been collected, Detrended Correspondence Analysis (DCA) ordination method was employed on the pollen data. The results show that dominating vegetation types can be recognized by their pollen spectra: Picea crassifolia forest, alpine shrub and alpine meadow as well. Altitude and temperature determine the distribution of the surface pollen and the vegetation. The good agreement between modern vegetation and surface samples across this area provides a measure of the reliability of using pollen data to reconstruct paleoenvironment and paleovegetation patterns in this or other similar regions. However the loss of Betula pollen in forest needs further investigation. Pollen oxidation is the most important factor contributing to the damage of modern pollen in the study area. Pollen concentrations decrease with the increase of pH values of soils, and decrease sharply when the pH exceeds 7.6.展开更多
Based on detailed investigation of the modern sedimentation of the distributive fluvial system of Shule River and the data of unmanned aerial vehicle(UAV)aerial photography and satellite remote sensing,the sedimentary...Based on detailed investigation of the modern sedimentation of the distributive fluvial system of Shule River and the data of unmanned aerial vehicle(UAV)aerial photography and satellite remote sensing,the sedimentary characteristics and differences of distributive fluvial system in arid areas are analyzed.By comparing the changes in slope,river morphology and sedimentary characteristics in different sections from the apex to the toe,the distributive fluvial system of Shule River can be divided into three facies belts:"proximal","middle"and"distal".The proximal belt has the largest slope and strongest hydrodynamic condition,mainly appears as large-scale braided river deposits;the fluvial bars in this belt are mainly composed of gravels,the gravels have good roundness and certain directionality,and are medium-large boulders,with low sand content;the main microfacies in this belt are braided channel and flood plain.The middle belt with slope smaller than the proximal belt,is mainly composed of braided bifurcating river deposits.Due to branching and infiltration,this belt has weaker hydrodynamic conditions,so some of the distributive rivers dry up,appearing as ephemeral rivers.This belt has small lenticular sandbodies,fine to medium gravels,higher sand content,and mainly braided channel,flood plain and aeolian dune microfacies.The distal belt has the smallest slope and flat terrain,where the river begins to transform from braided river to meandering river,the sediment is mainly sand.Due to the influence of slope,this belt has weaker erosion toward source and stronger lateral erosion,and point bars developing around the edge of the active lobes.In this belt,the river is completely meandering,and the main microfacies are braided channel,meandering channel,flood plain,aeolian dune,lake and swamp.展开更多
Pollen analysis of 23 surface samples in the east of Qaidam Basin reveals the characteristics of pollen assemblages and their relationships with vegetation and climate. In pollen assemblages, Chenopodiaceae and Artemi...Pollen analysis of 23 surface samples in the east of Qaidam Basin reveals the characteristics of pollen assemblages and their relationships with vegetation and climate. In pollen assemblages, Chenopodiaceae and Artemisia are preponderant types in all the samples, and Ephedra, Gramineae and Compositae are common types. The results of DCA (Detrended Correspondance Analysis) and Correlation Analysis show different pollen assemblages indicate different vegetations, coincided with respective vegetation types. A/C (Artemisia/Chenopodiaceae) in the desert can indicate the aridity. Depending on the aridity, the vegetation communities are divided into four groups: severe drought group, moderate drought group, slight drought group and tropophilous group. A/C value is less 0.2 in the severe drought group, 0.2-0.5 in the moderate drought group, 1.63 in the slight drought group and 5.72 slight-wetness group.展开更多
基金National Key Project for Basic Research on Tibetan Plateau, No.2005CB422004 Knowledge Innovation Project of CAS, No.KZCX3-SW-339
文摘The objective of this study is to investigate pollen-vegetation relationship in the Qilian Mountains. The eastern Qilian Mountains are located in the transitional zone of the Tibetan Plateau, the Loess Plateau and the arid region of Northwest China; which is one of the key areas of global environmental change. A total of 13 surface pollen samples from main vegetation have been collected. Pollen percentages were calculated in all samples. In order to reveal the relationship between pollen composition and the vegetation types from which the soil samples have been collected, Detrended Correspondence Analysis (DCA) ordination method was employed on the pollen data. The results show that dominating vegetation types can be recognized by their pollen spectra: Picea crassifolia forest, alpine shrub and alpine meadow as well. Altitude and temperature determine the distribution of the surface pollen and the vegetation. The good agreement between modern vegetation and surface samples across this area provides a measure of the reliability of using pollen data to reconstruct paleoenvironment and paleovegetation patterns in this or other similar regions. However the loss of Betula pollen in forest needs further investigation. Pollen oxidation is the most important factor contributing to the damage of modern pollen in the study area. Pollen concentrations decrease with the increase of pH values of soils, and decrease sharply when the pH exceeds 7.6.
基金Supported by the National Natural Science Foundation of China(41772094)National Science and Technology Major Project(2016ZX05027-002-007)。
文摘Based on detailed investigation of the modern sedimentation of the distributive fluvial system of Shule River and the data of unmanned aerial vehicle(UAV)aerial photography and satellite remote sensing,the sedimentary characteristics and differences of distributive fluvial system in arid areas are analyzed.By comparing the changes in slope,river morphology and sedimentary characteristics in different sections from the apex to the toe,the distributive fluvial system of Shule River can be divided into three facies belts:"proximal","middle"and"distal".The proximal belt has the largest slope and strongest hydrodynamic condition,mainly appears as large-scale braided river deposits;the fluvial bars in this belt are mainly composed of gravels,the gravels have good roundness and certain directionality,and are medium-large boulders,with low sand content;the main microfacies in this belt are braided channel and flood plain.The middle belt with slope smaller than the proximal belt,is mainly composed of braided bifurcating river deposits.Due to branching and infiltration,this belt has weaker hydrodynamic conditions,so some of the distributive rivers dry up,appearing as ephemeral rivers.This belt has small lenticular sandbodies,fine to medium gravels,higher sand content,and mainly braided channel,flood plain and aeolian dune microfacies.The distal belt has the smallest slope and flat terrain,where the river begins to transform from braided river to meandering river,the sediment is mainly sand.Due to the influence of slope,this belt has weaker erosion toward source and stronger lateral erosion,and point bars developing around the edge of the active lobes.In this belt,the river is completely meandering,and the main microfacies are braided channel,meandering channel,flood plain,aeolian dune,lake and swamp.
基金Scientific research fund of Hebei Normal University, No.L2004B14 National Key Basic Research Program, No.2005CB422005+3 种基金 National Natural Science Foundation of China, No.90202012 No.40171095 Natural Science Foundation of Hebei Province, No.402615 Knowledge Innovation Project of CAS, No.KZCX3-SW-339
文摘Pollen analysis of 23 surface samples in the east of Qaidam Basin reveals the characteristics of pollen assemblages and their relationships with vegetation and climate. In pollen assemblages, Chenopodiaceae and Artemisia are preponderant types in all the samples, and Ephedra, Gramineae and Compositae are common types. The results of DCA (Detrended Correspondance Analysis) and Correlation Analysis show different pollen assemblages indicate different vegetations, coincided with respective vegetation types. A/C (Artemisia/Chenopodiaceae) in the desert can indicate the aridity. Depending on the aridity, the vegetation communities are divided into four groups: severe drought group, moderate drought group, slight drought group and tropophilous group. A/C value is less 0.2 in the severe drought group, 0.2-0.5 in the moderate drought group, 1.63 in the slight drought group and 5.72 slight-wetness group.