GH984G alloy is a significant candidate material for 650-700℃ ultra-supercritical coal-fired generating units.In this paper,creep rupture properties and microstructure stability of the GH984G alloy tube were studied,...GH984G alloy is a significant candidate material for 650-700℃ ultra-supercritical coal-fired generating units.In this paper,creep rupture properties and microstructure stability of the GH984G alloy tube were studied,and the findings indicated excellent creep rupture properties at 700℃.Furthermore,the extrapolated strength for 100000 h was found to be 153.8 MPa,which satisfies the requirements for the long-term performance of high-temperature materials in power stations.Aging at 700℃ with the extension of time,the grain boundary carbides and the particle size of the γ′phase on the matrix gradually coarsen,but its spherical morphology remains uniformly distributed.However,no harmful phase precipitates were found even after aging at 700℃ for up to 19144 h.Excellent microstructure stability guarantees the 700℃ creep rupture properties of the GH984G alloy tube.展开更多
The novel martensitic heat-resistant steel G115 was designed for thick-section boiler components of ultra-supercritical(USC) power plants at 630-650 ℃.The impact of the quenching and tempering processes on the proper...The novel martensitic heat-resistant steel G115 was designed for thick-section boiler components of ultra-supercritical(USC) power plants at 630-650 ℃.The impact of the quenching and tempering processes on the properties and microstructure of G115 steel was explored.The samples that were quenched and tempered twice had a higher tensile strength at room temperature and 650 ℃,and the impact energy was significantly improved.The strength and impact energy increased in proportion to the increase in the first quenching temperature.The microstructure differences between the single and double quenched and tempered samples were examined using metallographic microscopy and scanning electron microscopy.The grain size of the double quenched and tempered samples was finer than that of the single quenched and tempered samples, and the tempered martensite lath is more visible, as are the carbides and other precipitates, which are finer and more uniformly distributed.As the first quenching temperature increased, the grains became coarser but more uniform.展开更多
文摘GH984G alloy is a significant candidate material for 650-700℃ ultra-supercritical coal-fired generating units.In this paper,creep rupture properties and microstructure stability of the GH984G alloy tube were studied,and the findings indicated excellent creep rupture properties at 700℃.Furthermore,the extrapolated strength for 100000 h was found to be 153.8 MPa,which satisfies the requirements for the long-term performance of high-temperature materials in power stations.Aging at 700℃ with the extension of time,the grain boundary carbides and the particle size of the γ′phase on the matrix gradually coarsen,but its spherical morphology remains uniformly distributed.However,no harmful phase precipitates were found even after aging at 700℃ for up to 19144 h.Excellent microstructure stability guarantees the 700℃ creep rupture properties of the GH984G alloy tube.
文摘The novel martensitic heat-resistant steel G115 was designed for thick-section boiler components of ultra-supercritical(USC) power plants at 630-650 ℃.The impact of the quenching and tempering processes on the properties and microstructure of G115 steel was explored.The samples that were quenched and tempered twice had a higher tensile strength at room temperature and 650 ℃,and the impact energy was significantly improved.The strength and impact energy increased in proportion to the increase in the first quenching temperature.The microstructure differences between the single and double quenched and tempered samples were examined using metallographic microscopy and scanning electron microscopy.The grain size of the double quenched and tempered samples was finer than that of the single quenched and tempered samples, and the tempered martensite lath is more visible, as are the carbides and other precipitates, which are finer and more uniformly distributed.As the first quenching temperature increased, the grains became coarser but more uniform.