The kinematic error model of a 6-DOF space robot is deduced, and the cost function of kinematic parameter identification is built. With the aid of the genetic algorithm (GA) that has the powerful global adaptive pro...The kinematic error model of a 6-DOF space robot is deduced, and the cost function of kinematic parameter identification is built. With the aid of the genetic algorithm (GA) that has the powerful global adaptive probabilistic search ability, 24 parameters of the robot are identified through simulation, which makes the pose (position and orientation) accuracy of the robot a great improvement. In the process of the calibration, stochastic measurement noises are considered. Lastly, generalization of the identified kinematic parameters in the whole workspace of the robot is discussed. The simulation results show that calibrating the robot with GA is very stable and not sensitive to measurement noise. Moreover, even if the robot's kinematic parameters are relative, GA still has strong search ability to find the optimum solution.展开更多
The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields.Most of the solutions of the manipulator’s motion trackin...The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields.Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance,so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints.Thus,sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process.Due to the switching effects of the variable structure controller,once the tracking error reaches the designed hyper-plane,it will be restricted to this plane permanently even with the existence of external disturbances.Thus,precise attitude regulation can be achieved.Furthermore,taking the non-zero initial tracking errors and chattering phenomenon into consideration,saturation functions are used to replace sign functions to smooth the control torques.The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller.Mathematical models of free-floating space manipulator are established and simulations are conducted in the end.The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm,the steady state error is 0.000 2 rad.In addition,the joint tracking trajectory is smooth,the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input.The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion,and improves the precision of the spacecraft attitude regulation.展开更多
A segmented hyper-redundant manipulator can perform complicated operation tasks in a confined space due to its high flexibility and dexterity. However, the trajectory planning in a narrow space and obstacles environme...A segmented hyper-redundant manipulator can perform complicated operation tasks in a confined space due to its high flexibility and dexterity. However, the trajectory planning in a narrow space and obstacles environment is very challenging for the manipulator. In this paper, we propose a geometry method to simultaneously plan the end-effector pose and manipulator’s configuration. Firstly, the geometries of each segment are described by an inscribed arc(IA) and a circumscribed arc(CA). Then,the whole kinematics chain is considered as an inscribed curve(IC) or a circumscribed curve(CC) which are composed of multiple IAs or CAs. Furthermore, the IC and CC of the manipulator are divided into multiple spatial single-arc and double-arc groups according to requirements. The pose-configuration simultaneous planning is realized by the spatial single-arc/double-arc modeling and joints angles solving. By numerical iteration, the spatial arcs’ parameters are determined according to desired pose and boundary condition of obstacle avoidance. The angles of joints are analytically solved when the above parameters are known. Finally, a narrow space detection task is simulated and experimented respectively. The results verify the proposed method.展开更多
Flapping-wing flying robots(FWFRs),especially large-scale robots,have unique advantages in flight efficiency,load capacity,and bionic hiding.Therefore,they have significant potential in environmental detection,disaste...Flapping-wing flying robots(FWFRs),especially large-scale robots,have unique advantages in flight efficiency,load capacity,and bionic hiding.Therefore,they have significant potential in environmental detection,disaster rescue,and anti-terrorism explosion monitoring.However,at present,most FWFRs are operated manually.Some have a certain autonomous ability limited to the cruise stage but not the complete flight cycle.These factors make an FWFR unable to give full play to the advantages of flapping-wing flight to perform autonomous flight tasks.This paper proposed an autonomous flight control method for FWFRs covering the complete process,including the takeoff,cruise,and landing stages.First,the flight characteristics of the mechanical structure of the robot are analyzed.Then,dedicated control strategies are designed following the different control requirements of the defined stages.Furthermore,a hybrid control law is presented by combining different control strategies and objectives.Finally,the proposed method and system are validated through outdoor flight experiments of the HIT-Hawk with a wingspan of 2.3 m,in which the control algorithm is integrated with an onboard embedded controller.The experimental results show that this robot can fly autonomously during the complete flight cycle.The mean value and root mean square(RMS)of the control error are less than 0.8409 and 3.054 m,respectively,when it flies around a circle in an annular area with a radius of 25 m and a width of 10 m.展开更多
基金supported by National Natural Science Foundation of China(No.60775049).
文摘The kinematic error model of a 6-DOF space robot is deduced, and the cost function of kinematic parameter identification is built. With the aid of the genetic algorithm (GA) that has the powerful global adaptive probabilistic search ability, 24 parameters of the robot are identified through simulation, which makes the pose (position and orientation) accuracy of the robot a great improvement. In the process of the calibration, stochastic measurement noises are considered. Lastly, generalization of the identified kinematic parameters in the whole workspace of the robot is discussed. The simulation results show that calibrating the robot with GA is very stable and not sensitive to measurement noise. Moreover, even if the robot's kinematic parameters are relative, GA still has strong search ability to find the optimum solution.
基金supported by National Natural Science Foundation of China(Grant No.61175098)
文摘The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields.Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance,so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints.Thus,sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process.Due to the switching effects of the variable structure controller,once the tracking error reaches the designed hyper-plane,it will be restricted to this plane permanently even with the existence of external disturbances.Thus,precise attitude regulation can be achieved.Furthermore,taking the non-zero initial tracking errors and chattering phenomenon into consideration,saturation functions are used to replace sign functions to smooth the control torques.The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller.Mathematical models of free-floating space manipulator are established and simulations are conducted in the end.The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm,the steady state error is 0.000 2 rad.In addition,the joint tracking trajectory is smooth,the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input.The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion,and improves the precision of the spacecraft attitude regulation.
基金supported by the Key Research and Development Program of Guangdong Province(Grant No.2019B090915001)the National Key R&D Program of China(Grant No.2018YFB1304600)+1 种基金the National Natural Science Foundation of China(Grant No.61803125)the Basic Research Program of Shenzhen(Grant Nos.JCY20180507183610564,JCYJ20190806144416980,and JSGG20200103103401723)。
文摘A segmented hyper-redundant manipulator can perform complicated operation tasks in a confined space due to its high flexibility and dexterity. However, the trajectory planning in a narrow space and obstacles environment is very challenging for the manipulator. In this paper, we propose a geometry method to simultaneously plan the end-effector pose and manipulator’s configuration. Firstly, the geometries of each segment are described by an inscribed arc(IA) and a circumscribed arc(CA). Then,the whole kinematics chain is considered as an inscribed curve(IC) or a circumscribed curve(CC) which are composed of multiple IAs or CAs. Furthermore, the IC and CC of the manipulator are divided into multiple spatial single-arc and double-arc groups according to requirements. The pose-configuration simultaneous planning is realized by the spatial single-arc/double-arc modeling and joints angles solving. By numerical iteration, the spatial arcs’ parameters are determined according to desired pose and boundary condition of obstacle avoidance. The angles of joints are analytically solved when the above parameters are known. Finally, a narrow space detection task is simulated and experimented respectively. The results verify the proposed method.
基金supported by the National Natural Science Foundation of China(Grant No.62233001)the Program of Shenzhen Peacock Innovation Team(Grant No.KQTD20210811090146075)Shenzhen Excellent Scientific and Technological Innovation Talent Training Project(Grant No.RCJC20200714114436040)。
文摘Flapping-wing flying robots(FWFRs),especially large-scale robots,have unique advantages in flight efficiency,load capacity,and bionic hiding.Therefore,they have significant potential in environmental detection,disaster rescue,and anti-terrorism explosion monitoring.However,at present,most FWFRs are operated manually.Some have a certain autonomous ability limited to the cruise stage but not the complete flight cycle.These factors make an FWFR unable to give full play to the advantages of flapping-wing flight to perform autonomous flight tasks.This paper proposed an autonomous flight control method for FWFRs covering the complete process,including the takeoff,cruise,and landing stages.First,the flight characteristics of the mechanical structure of the robot are analyzed.Then,dedicated control strategies are designed following the different control requirements of the defined stages.Furthermore,a hybrid control law is presented by combining different control strategies and objectives.Finally,the proposed method and system are validated through outdoor flight experiments of the HIT-Hawk with a wingspan of 2.3 m,in which the control algorithm is integrated with an onboard embedded controller.The experimental results show that this robot can fly autonomously during the complete flight cycle.The mean value and root mean square(RMS)of the control error are less than 0.8409 and 3.054 m,respectively,when it flies around a circle in an annular area with a radius of 25 m and a width of 10 m.