Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attentio...Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe.展开更多
纳米Al2O3/ZrO2复合陶瓷具有优良的力学性能,良好的高温稳定性和化学稳定性,并具有良好的抗辐照效应,是目前极具潜力的一种纳米陶瓷材料。采用正电子寿命谱分析同时配合着X射线衍射(X-ray Diffraction,XRD)和透射电子显微镜(Transmissio...纳米Al2O3/ZrO2复合陶瓷具有优良的力学性能,良好的高温稳定性和化学稳定性,并具有良好的抗辐照效应,是目前极具潜力的一种纳米陶瓷材料。采用正电子寿命谱分析同时配合着X射线衍射(X-ray Diffraction,XRD)和透射电子显微镜(Transmission Electron Microscope,TEM)对纳米Al2O3、ZrO2和Al2O3/ZrO2复合陶瓷在不同退火温度下(室温−1000℃)的微结构及缺陷进行了研究。XRD研究表明:Al2O3、ZrO2和Al2O3/ZrO2纳米复合陶瓷三种样品退火温度低于500℃时,晶粒尺寸保持不变;随着退火温度的增加,Al2O3晶粒尺寸变化不大,ZrO2和Al2O3/ZrO2有所增加,但由于Al2O3的抑制,Al2O3/ZrO2的晶粒生长更缓慢。正电子寿命分析表明:样品内主要缺陷是空位、空位团和微孔洞,缺陷主要集中在晶界处。对比ZrO2纳米陶瓷内缺陷,Al2O3和Al2O3/ZrO2纳米复合陶瓷内空位团或微孔洞缺陷尺寸更大,而相对数量更少。退火温度低于500℃时,三种样品内平均缺陷密度基本不变,高于500℃时由于晶粒生长,缺陷开始恢复,ZrO2变化更明显,而Al2O3/ZrO2由于相互抑制对方的晶粒生长,稳定性更高,这与XRD结果一致。纳米Al2O3的TEM图显示出晶粒大小基本不随退火温度变化发生改变,而纳米Al2O3/ZrO2只有在退火温度高于500℃时,晶粒开始慢慢长大,并且发生了团聚,非常直观地证实了XRD和正电子的实验结果。展开更多
基金the National Natural Science Foundation of China(31860136,31560156)the Basic Scientific Research Service Fee Project of Colleges and Universities of Inner Mongolia Autonomous Regionthe Graduate Scientific Research Innovation Project of Inner Mongolia Autonomous Region(B20210158Z).
文摘Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe.
文摘纳米Al2O3/ZrO2复合陶瓷具有优良的力学性能,良好的高温稳定性和化学稳定性,并具有良好的抗辐照效应,是目前极具潜力的一种纳米陶瓷材料。采用正电子寿命谱分析同时配合着X射线衍射(X-ray Diffraction,XRD)和透射电子显微镜(Transmission Electron Microscope,TEM)对纳米Al2O3、ZrO2和Al2O3/ZrO2复合陶瓷在不同退火温度下(室温−1000℃)的微结构及缺陷进行了研究。XRD研究表明:Al2O3、ZrO2和Al2O3/ZrO2纳米复合陶瓷三种样品退火温度低于500℃时,晶粒尺寸保持不变;随着退火温度的增加,Al2O3晶粒尺寸变化不大,ZrO2和Al2O3/ZrO2有所增加,但由于Al2O3的抑制,Al2O3/ZrO2的晶粒生长更缓慢。正电子寿命分析表明:样品内主要缺陷是空位、空位团和微孔洞,缺陷主要集中在晶界处。对比ZrO2纳米陶瓷内缺陷,Al2O3和Al2O3/ZrO2纳米复合陶瓷内空位团或微孔洞缺陷尺寸更大,而相对数量更少。退火温度低于500℃时,三种样品内平均缺陷密度基本不变,高于500℃时由于晶粒生长,缺陷开始恢复,ZrO2变化更明显,而Al2O3/ZrO2由于相互抑制对方的晶粒生长,稳定性更高,这与XRD结果一致。纳米Al2O3的TEM图显示出晶粒大小基本不随退火温度变化发生改变,而纳米Al2O3/ZrO2只有在退火温度高于500℃时,晶粒开始慢慢长大,并且发生了团聚,非常直观地证实了XRD和正电子的实验结果。