Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra...Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability.展开更多
利用瞬变扰动分析的原理,提供了一个可以客观判定海雾发生时天气类型的方法。在分类结果的基础上,对环流形势、散度和垂直速度以及温度湿度的垂直廓线等进行合成分析,得到低空(1 000 h Pa)为低压扰动下发生海雾(L型海雾)的环流和物理量...利用瞬变扰动分析的原理,提供了一个可以客观判定海雾发生时天气类型的方法。在分类结果的基础上,对环流形势、散度和垂直速度以及温度湿度的垂直廓线等进行合成分析,得到低空(1 000 h Pa)为低压扰动下发生海雾(L型海雾)的环流和物理量场基本特征,并与高压控制下海雾(H型海雾)进行对比,结果表明:1)L型海雾位势高度负异常扰动主要表现在低层,其平均值为-65.66 gpm,向上逐渐减弱;2)L型海雾在发生时其逆温强度小于H型海雾,雾层较厚,雾层上空湿度仍然比较大,而H型海雾雾层上空有比较明显的干层;3)L型海雾在垂直方向上的分布具有三层结构,第一层1 000~950 h Pa为辐合伴有弱上升和下沉运动,第二层950~850 h Pa为辐散伴有弱下沉运动,第三层850~500 h Pa为逐渐加强的上升运动;H型海雾为两层结构,1 000 h Pa为辐散伴有弱的上升和下沉运动,950~500 h Pa为一致的下沉运动;4)概率密度统计分析进一步定量表明了L型和H型海雾发生时垂直运动以及相对湿度在各层中的分布情况。这些结论对黄海西北部夏季低压环流形势下海雾的预报提供了重要参考。展开更多
基金funded by the National Key R&D Program of China (Grant No. 2021YFB3901402)the Fundamental Research Funds for the Central Universities (Project No. 2022CDJKYJH037)。
文摘Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability.
文摘利用瞬变扰动分析的原理,提供了一个可以客观判定海雾发生时天气类型的方法。在分类结果的基础上,对环流形势、散度和垂直速度以及温度湿度的垂直廓线等进行合成分析,得到低空(1 000 h Pa)为低压扰动下发生海雾(L型海雾)的环流和物理量场基本特征,并与高压控制下海雾(H型海雾)进行对比,结果表明:1)L型海雾位势高度负异常扰动主要表现在低层,其平均值为-65.66 gpm,向上逐渐减弱;2)L型海雾在发生时其逆温强度小于H型海雾,雾层较厚,雾层上空湿度仍然比较大,而H型海雾雾层上空有比较明显的干层;3)L型海雾在垂直方向上的分布具有三层结构,第一层1 000~950 h Pa为辐合伴有弱上升和下沉运动,第二层950~850 h Pa为辐散伴有弱下沉运动,第三层850~500 h Pa为逐渐加强的上升运动;H型海雾为两层结构,1 000 h Pa为辐散伴有弱的上升和下沉运动,950~500 h Pa为一致的下沉运动;4)概率密度统计分析进一步定量表明了L型和H型海雾发生时垂直运动以及相对湿度在各层中的分布情况。这些结论对黄海西北部夏季低压环流形势下海雾的预报提供了重要参考。