Natural wetlands are known to store huge amounts of organic carbon in their soils. Despite the importance of this storage,uncertainties remain about the molecular characteristics of soil organic matter(SOM), a key fac...Natural wetlands are known to store huge amounts of organic carbon in their soils. Despite the importance of this storage,uncertainties remain about the molecular characteristics of soil organic matter(SOM), a key factor governing the stability of soil organic carbon(SOC). In this study, the molecular fingerprints of SOM in a typical freshwater wetland in Northeast China were investigated using pyrolysis gas-chromatography/mass-spectrometry technology(Py-GC/MS). Results indicated that the SOC, total nitrogen(TN),and total sulfur contents of the cores varied between 16.88% and 45.83%, 0.93% and 2.82%, and 1.09% and 3.79%, respectively. The bulk δ^13C and δ^15N varied over a range of 9.85‰, between –26.85‰ and –17.00‰, and between –0.126‰ and 1.002‰, respectively. A total of 134 different pyrolytic products were identified, and they were grouped into alkyl(including n-alkanes(C:0) and n-alkenes(C:1),aliphatics(Al), aromatics(Ar), lignin(Lg), nitrogen-containing compounds(Nc), polycyclic aromatic hydrocarbons(PAHs), phenols(Phs), polysaccharides(Ps), and sulfur-containing compounds(Sc). On average, Phs moieties accounted for roughly 24.11% peak areas of the total pyrolysis products, followed by Lg(19.27%), alkyl(18.96%), other aliphatics(12.39%), Nc compounds(8.08%), Ps(6.49%), aromatics(6.32%), Sc(3.26%), and PAHs(1.12%). Soil organic matter from wetlands had more Phs and Lg and less Nc moieties in pyrolytic products than soil organic matters from forests, lake sediments, pastures, and farmland.δ^13 C distribution patterns implied more C3 plant-derived soil organic matter, but the vegetation was in succession to C4 plant from C3 plant. Significant negative correlations between Lg or Ps proportions and C3 plant proportions were observed. Multiple linear analyses implied that the Ar and Al components had negative effects on SOC. Alkyl and Ar could facilitate ratios between SOC and total nitrogen(C/N), while Al plays the opposite role. Al was positively related to the ratio of dissolved organic carbon(DOC) to SOC. In summary, SOM of wetlands might characterize by more Phs and lignin and less Nc moieties in pyrolytic products. The use of Pyrolysis gas-chromatography/mass-spectrometry(Py-GC/MS) technology provided detailed information on the molecular characteristics of SOM from a typical freshwater wetland.展开更多
Northeast China is the region with the largest area of wetlands in China. The Sanjiang Plain and the Songnen Plain are large freshwater marsh distribution regions that are affected by climate warming and by the increa...Northeast China is the region with the largest area of wetlands in China. The Sanjiang Plain and the Songnen Plain are large freshwater marsh distribution regions that are affected by climate warming and by the increasing frequency and density of extreme weather and are the regions most subject to disturbances by human activities in Northeast China. The wetlands of the Sanjiang Plain and the Songnen Plain have shrunk severely in the past 60 years, and wetland functions have been reduced substantially because of climate change, unreasonable land use, fire episodes, engineering and construction works and urbanization. Large-scale agricultural development started in the 1950 s has been the most important driving factor for wetland loss and degradation in the Sanjiang Plain. Water shortage has been the most important factor for degradation and fragmentation of wetlands in the Songnen Plain. To mitigate wetland degradation and better protect wetlands, special regulations, long-term mechanisms and technical support of wetland protection should be established. A wetland compensation program should be implemented, and technologies for increasing the adaptive capacity of wetlands should be developed. Moreover, it is most important to find the balanced threshold between agricultural development and wetland protection.展开更多
Wetlands on the Qinghai-Tibetan Plateau (QTP) perform a dazzling array of vital ecological functions and are one of the most fragile ecosystems in the world. Timely and accurate information describing wetland resour...Wetlands on the Qinghai-Tibetan Plateau (QTP) perform a dazzling array of vital ecological functions and are one of the most fragile ecosystems in the world. Timely and accurate information describing wetland resources and their changes over time is becoming more important in their protection and conservation. By using remote sensing data, this study intended to investigate spatial distribution and temporal variations of wetlands on the QTP at different watershed scales from 1970s to 2010s. Results show that wetlands on the QTP have undergone widespread degradation from 1970s to 2010s, with nearly 6.4% of their area being lost. Areas of freshwater marsh, salt marsh and wet meadow declined by 46.6%, 53.9% and 15.6%, respectively, while lake area increased by 14.6%. The most extensive losses of natural wet/ands have occurred in endorheic basins, such as in the Kunlun-Altun-Qilian Drainage Basin and Qiangtang Basin, which shrank by 44.5% and 33.1%, respectively. A pronounced increase in temperature tends to facilitate the evaporation process and reduce water availability for wetlands, One-third of the wetlands on the QTP are under threat of being submerged due to lakes rising in recent years. More research is needed to gain insight into the interaction mechanisms behind observed variations and potential impacts from further warming in the future.展开更多
Inspired by the importance of Redfield-type C:N:P ratios in global soils,we looked for analogous patterns in peatlands and aimed at deciphering the potential affecting factors.By analyzing a suite of peatlands soil da...Inspired by the importance of Redfield-type C:N:P ratios in global soils,we looked for analogous patterns in peatlands and aimed at deciphering the potential affecting factors.By analyzing a suite of peatlands soil data(n = 1031),mean soil organic carbon(SOC),total nitrogen(TN) and total phosphorous(TP) contents were 50.51%,1.45% and 0.13%,respectively,while average C:N,C:P and N:P ratios were 26.72,1186.00 and 46.58,respectively.C:N ratios showed smaller variations across different vegetation coverage and had less spatial heterogeneity than C:P and N:P ratios.No consistent C:N:P ratio,though with a general value of 1245:47:1,was found for entire peatland soils in China.The Northeast China,Tibet,Zoigê Plateau and parts of Xinjiang had high soil SOC,TN,TP,and C:P ratio.Qinghai,parts of the lower reaches of the Yangtze River,and the coast zones have low TP and N:P ratio.Significant differences for SOC,TN,TP,C:N,C:P and N:P ratios were observed across groups categorized by predominant vegetation.Moisture,temperature and precipitation all closely related to SOC,TN,TP and their pairwise ratios.The hydrothermal coefficient(RH),defined as annual average precipitation divided by temperature,positively and significantly related to C:N,C:P and N:P ratios,implying that ongoing climate change may prejudice peatlands as carbon sinks during the past 50 years in China.展开更多
Landscape characters in estuarine regions generally controlled by tidal regimes and human activities like road construction.In this work,tidal channels and road construction in the Yellow River Delta(YRD)were extracte...Landscape characters in estuarine regions generally controlled by tidal regimes and human activities like road construction.In this work,tidal channels and road construction in the Yellow River Delta(YRD)were extracted by visual interpretation methods so as to decipher impacts of tidal channel development and road construction on landscape patch change during 1989–2016.Spatial distribution history of three wetlands,which covered by Phragmites australis(freshwater marsh,FM),Suaeda salsa(salt marsh,SM),and mudflats(MD)were also established.Results indicated that tidal channel,number,frequency,and fractal dimension were all the maximum in 2003,and the minimum in 1998,respectively.Road length,number,and density showed increasing trend during 1989–2016.MD were the predominant landscape type,followed by FM and SM during 1989-2016.Principal component analysis implied two extracted factors,F1 and F2,which could represent 91.93% of the total variations.F1 mainly proxied tidal channel development,while F2 represented road construction.A multiple linear regression analysis showed positive effects of both F1 and F2 on FM patch numbers and negative impacts on SM patch areaes with R^2 values of 0.416 and 0.599,respectively.Tidal channels were negatively related to MD patch numbers,while roads were positively related to that.In any case,road construction showed larger impacts on landscape type shifting than that of tidal channel development in the YRD.展开更多
Adjacent intensive agriculture disturbs the natural condition of wetlands.However, to assess the effect of this agriculture on wetlands, few studies have used indices based on aquatic invertebrates.Multi-metric indice...Adjacent intensive agriculture disturbs the natural condition of wetlands.However, to assess the effect of this agriculture on wetlands, few studies have used indices based on aquatic invertebrates.Multi-metric indices(MMIs) have been successfully used to assess freshwater ecosystems worldwide and are an important management tool, but little is known about their applicability in the Sanjiang Plain, Northeast China.In this study, we developed a MMIs for aquatic invertebrates to assess freshwater wetlands in this region.The aquatic invertebrate assemblages were sampled in 27 wetlands in the Sanjiang Plain that included those in natural reserves and those affected by adjacent, intensive agriculture.Twenty-four candidate metrics were initially reviewed and screened before four core metrics were selected: total number of taxa, number of Hemiptera taxa, proportion of Gastropoda, and proportion of predators.Mann-Whitney U tests, Box and Whisker plots, correlation analyses, and redundant metric tests were used to assess the ability of metrics to distinguish among reference and impaired wetlands.Four ordinal rating categories for wetland were defined: poor, fair, good, and excellent.Of the impaired freshwater wetlands, 76.2% were in poor or fair categories.The MMIs was robust in discriminating reference wetlands from impaired wetlands and therefore have potential as a biomonitoring tool to assess the condition and to guide the restoration efforts of freshwater wetlands in Northeast China.展开更多
This study examined regional differences in ecosystem services for the Da Hinggan Mountains(DHM),China.A correction index was constructed based on ten-year average net primary productivity(NPP)data.A new equivalent fa...This study examined regional differences in ecosystem services for the Da Hinggan Mountains(DHM),China.A correction index was constructed based on ten-year average net primary productivity(NPP)data.A new equivalent factor table that was suitable for the assessment of wetlands in the DHM was formed by using the expert weight determination method(EWDM).An evaluation model was established for evaluating the ecosystem service value(ESV)of wetlands in the DHM.The results show that in 2020,the total ESV of wetlands reached 93361×10^(6) USD,with the forest swamp and marsh ecosystems contributing the most.From the perspective of value composition,regulating services and supporting services are the main service functions of wetlands in the DHM.From 2010 to2020,ESV provided by wetlands increased by 4337×10^(6) USD/yr in the DHM.The value of forest swamp and peatland ecosystems increased by 18.6%and 12.7%,respectively,whereas the value of swamp,shrub swamp,and marsh decreased.The research results are of significance for contributing to local government performance evaluation and determining financial compensation for the provision of wetland ecosystem services.展开更多
Global numerous wetlands are the most productive ecosystem and have high carbon sequestration potential to mitigate increasing CO2 in the atmosphere. However, few are available on estimating average carbon sequestrati...Global numerous wetlands are the most productive ecosystem and have high carbon sequestration potential to mitigate increasing CO2 in the atmosphere. However, few are available on estimating average carbon sequestration rates by global wetlands(Carbonsq) at century timescale. In this article, Carbonsq data of 473 wetland soil/sediment cores from the literatures were collected in detail by the meta-analysis method. These cores were no more than 300 years old and spanned a latitudinal range from 33.6° S to 69.7° N. Globally, the average Carbonsq was 185.2 g/(m^2·yr) regardless of wetland types. Carbonsq varied remarkably between wetland types and ranked as an order of salt marsh(247.7 g/(m^2·yr)) > mangrove(229.8 g/(m^2·yr)) > freshwater marsh(196.7 g/(m^2·yr)) > peatland(76.9 g/(m^2·yr)). Carbonsq was positively related to mean annual temperature(AMT) and annual precipitation(Pre). Nitrogen was the most common and primary factor controlling Carbonsq regardless of wetland types.展开更多
基金Under the auspices of the National Key R&D Program of China(No.2016YFC0500404)the National Natural Science Foundation of China(No.41671087,41671081,41771103)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2018265)
文摘Natural wetlands are known to store huge amounts of organic carbon in their soils. Despite the importance of this storage,uncertainties remain about the molecular characteristics of soil organic matter(SOM), a key factor governing the stability of soil organic carbon(SOC). In this study, the molecular fingerprints of SOM in a typical freshwater wetland in Northeast China were investigated using pyrolysis gas-chromatography/mass-spectrometry technology(Py-GC/MS). Results indicated that the SOC, total nitrogen(TN),and total sulfur contents of the cores varied between 16.88% and 45.83%, 0.93% and 2.82%, and 1.09% and 3.79%, respectively. The bulk δ^13C and δ^15N varied over a range of 9.85‰, between –26.85‰ and –17.00‰, and between –0.126‰ and 1.002‰, respectively. A total of 134 different pyrolytic products were identified, and they were grouped into alkyl(including n-alkanes(C:0) and n-alkenes(C:1),aliphatics(Al), aromatics(Ar), lignin(Lg), nitrogen-containing compounds(Nc), polycyclic aromatic hydrocarbons(PAHs), phenols(Phs), polysaccharides(Ps), and sulfur-containing compounds(Sc). On average, Phs moieties accounted for roughly 24.11% peak areas of the total pyrolysis products, followed by Lg(19.27%), alkyl(18.96%), other aliphatics(12.39%), Nc compounds(8.08%), Ps(6.49%), aromatics(6.32%), Sc(3.26%), and PAHs(1.12%). Soil organic matter from wetlands had more Phs and Lg and less Nc moieties in pyrolytic products than soil organic matters from forests, lake sediments, pastures, and farmland.δ^13 C distribution patterns implied more C3 plant-derived soil organic matter, but the vegetation was in succession to C4 plant from C3 plant. Significant negative correlations between Lg or Ps proportions and C3 plant proportions were observed. Multiple linear analyses implied that the Ar and Al components had negative effects on SOC. Alkyl and Ar could facilitate ratios between SOC and total nitrogen(C/N), while Al plays the opposite role. Al was positively related to the ratio of dissolved organic carbon(DOC) to SOC. In summary, SOM of wetlands might characterize by more Phs and lignin and less Nc moieties in pyrolytic products. The use of Pyrolysis gas-chromatography/mass-spectrometry(Py-GC/MS) technology provided detailed information on the molecular characteristics of SOM from a typical freshwater wetland.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFC0500403)National Natural Science Foundation of China(No.41471079,41571191,41671087)Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.IGA-135-05)
文摘Northeast China is the region with the largest area of wetlands in China. The Sanjiang Plain and the Songnen Plain are large freshwater marsh distribution regions that are affected by climate warming and by the increasing frequency and density of extreme weather and are the regions most subject to disturbances by human activities in Northeast China. The wetlands of the Sanjiang Plain and the Songnen Plain have shrunk severely in the past 60 years, and wetland functions have been reduced substantially because of climate change, unreasonable land use, fire episodes, engineering and construction works and urbanization. Large-scale agricultural development started in the 1950 s has been the most important driving factor for wetland loss and degradation in the Sanjiang Plain. Water shortage has been the most important factor for degradation and fragmentation of wetlands in the Songnen Plain. To mitigate wetland degradation and better protect wetlands, special regulations, long-term mechanisms and technical support of wetland protection should be established. A wetland compensation program should be implemented, and technologies for increasing the adaptive capacity of wetlands should be developed. Moreover, it is most important to find the balanced threshold between agricultural development and wetland protection.
基金Under the auspices of the National Key Research and Development Program of China(No.2016YFC050040106,2016YFA060230302)the National Science Foundation of China(No.41671087,41671081,41471081)the Technological Basic Research Program of China(No.2013FY111800)
文摘Wetlands on the Qinghai-Tibetan Plateau (QTP) perform a dazzling array of vital ecological functions and are one of the most fragile ecosystems in the world. Timely and accurate information describing wetland resources and their changes over time is becoming more important in their protection and conservation. By using remote sensing data, this study intended to investigate spatial distribution and temporal variations of wetlands on the QTP at different watershed scales from 1970s to 2010s. Results show that wetlands on the QTP have undergone widespread degradation from 1970s to 2010s, with nearly 6.4% of their area being lost. Areas of freshwater marsh, salt marsh and wet meadow declined by 46.6%, 53.9% and 15.6%, respectively, while lake area increased by 14.6%. The most extensive losses of natural wet/ands have occurred in endorheic basins, such as in the Kunlun-Altun-Qilian Drainage Basin and Qiangtang Basin, which shrank by 44.5% and 33.1%, respectively. A pronounced increase in temperature tends to facilitate the evaporation process and reduce water availability for wetlands, One-third of the wetlands on the QTP are under threat of being submerged due to lakes rising in recent years. More research is needed to gain insight into the interaction mechanisms behind observed variations and potential impacts from further warming in the future.
基金Under the auspices of National Key Research Program of China(No.2016YFC0500404-5)National Natural Science Foundation of China(No.41671081,41471081,41671087)Foundation of Jilin Province(No.20140520141JH)
文摘Inspired by the importance of Redfield-type C:N:P ratios in global soils,we looked for analogous patterns in peatlands and aimed at deciphering the potential affecting factors.By analyzing a suite of peatlands soil data(n = 1031),mean soil organic carbon(SOC),total nitrogen(TN) and total phosphorous(TP) contents were 50.51%,1.45% and 0.13%,respectively,while average C:N,C:P and N:P ratios were 26.72,1186.00 and 46.58,respectively.C:N ratios showed smaller variations across different vegetation coverage and had less spatial heterogeneity than C:P and N:P ratios.No consistent C:N:P ratio,though with a general value of 1245:47:1,was found for entire peatland soils in China.The Northeast China,Tibet,Zoigê Plateau and parts of Xinjiang had high soil SOC,TN,TP,and C:P ratio.Qinghai,parts of the lower reaches of the Yangtze River,and the coast zones have low TP and N:P ratio.Significant differences for SOC,TN,TP,C:N,C:P and N:P ratios were observed across groups categorized by predominant vegetation.Moisture,temperature and precipitation all closely related to SOC,TN,TP and their pairwise ratios.The hydrothermal coefficient(RH),defined as annual average precipitation divided by temperature,positively and significantly related to C:N,C:P and N:P ratios,implying that ongoing climate change may prejudice peatlands as carbon sinks during the past 50 years in China.
基金Under the auspices of National Key Research and Development Project(No.2017YFC0505901)
文摘Landscape characters in estuarine regions generally controlled by tidal regimes and human activities like road construction.In this work,tidal channels and road construction in the Yellow River Delta(YRD)were extracted by visual interpretation methods so as to decipher impacts of tidal channel development and road construction on landscape patch change during 1989–2016.Spatial distribution history of three wetlands,which covered by Phragmites australis(freshwater marsh,FM),Suaeda salsa(salt marsh,SM),and mudflats(MD)were also established.Results indicated that tidal channel,number,frequency,and fractal dimension were all the maximum in 2003,and the minimum in 1998,respectively.Road length,number,and density showed increasing trend during 1989–2016.MD were the predominant landscape type,followed by FM and SM during 1989-2016.Principal component analysis implied two extracted factors,F1 and F2,which could represent 91.93% of the total variations.F1 mainly proxied tidal channel development,while F2 represented road construction.A multiple linear regression analysis showed positive effects of both F1 and F2 on FM patch numbers and negative impacts on SM patch areaes with R^2 values of 0.416 and 0.599,respectively.Tidal channels were negatively related to MD patch numbers,while roads were positively related to that.In any case,road construction showed larger impacts on landscape type shifting than that of tidal channel development in the YRD.
基金Under the auspices of National Key Research and Development Project of China(No.2016YFC0500408)National Natural Science Foundation of China(No.41871099,41671260)Science and Technology Development Program of Jilin Province(No.20180101080JC)
文摘Adjacent intensive agriculture disturbs the natural condition of wetlands.However, to assess the effect of this agriculture on wetlands, few studies have used indices based on aquatic invertebrates.Multi-metric indices(MMIs) have been successfully used to assess freshwater ecosystems worldwide and are an important management tool, but little is known about their applicability in the Sanjiang Plain, Northeast China.In this study, we developed a MMIs for aquatic invertebrates to assess freshwater wetlands in this region.The aquatic invertebrate assemblages were sampled in 27 wetlands in the Sanjiang Plain that included those in natural reserves and those affected by adjacent, intensive agriculture.Twenty-four candidate metrics were initially reviewed and screened before four core metrics were selected: total number of taxa, number of Hemiptera taxa, proportion of Gastropoda, and proportion of predators.Mann-Whitney U tests, Box and Whisker plots, correlation analyses, and redundant metric tests were used to assess the ability of metrics to distinguish among reference and impaired wetlands.Four ordinal rating categories for wetland were defined: poor, fair, good, and excellent.Of the impaired freshwater wetlands, 76.2% were in poor or fair categories.The MMIs was robust in discriminating reference wetlands from impaired wetlands and therefore have potential as a biomonitoring tool to assess the condition and to guide the restoration efforts of freshwater wetlands in Northeast China.
基金Under the auspices of the National Natural Science Foundation of China(No.U19A2042,U20A2083,42001112)。
文摘This study examined regional differences in ecosystem services for the Da Hinggan Mountains(DHM),China.A correction index was constructed based on ten-year average net primary productivity(NPP)data.A new equivalent factor table that was suitable for the assessment of wetlands in the DHM was formed by using the expert weight determination method(EWDM).An evaluation model was established for evaluating the ecosystem service value(ESV)of wetlands in the DHM.The results show that in 2020,the total ESV of wetlands reached 93361×10^(6) USD,with the forest swamp and marsh ecosystems contributing the most.From the perspective of value composition,regulating services and supporting services are the main service functions of wetlands in the DHM.From 2010 to2020,ESV provided by wetlands increased by 4337×10^(6) USD/yr in the DHM.The value of forest swamp and peatland ecosystems increased by 18.6%and 12.7%,respectively,whereas the value of swamp,shrub swamp,and marsh decreased.The research results are of significance for contributing to local government performance evaluation and determining financial compensation for the provision of wetland ecosystem services.
基金Under the auspices of the National Natural Science Foundation of China(Nos.U19A2042,41471081,41671081,41671087)the National Key Research and Development Program of China(Nos.2017YFC0505901,2016YFC050040106,2016YFA060230302)the Youth Innovation Promotion Association,Chinese Acadmy of Sciences(No.2018265)。
文摘Global numerous wetlands are the most productive ecosystem and have high carbon sequestration potential to mitigate increasing CO2 in the atmosphere. However, few are available on estimating average carbon sequestration rates by global wetlands(Carbonsq) at century timescale. In this article, Carbonsq data of 473 wetland soil/sediment cores from the literatures were collected in detail by the meta-analysis method. These cores were no more than 300 years old and spanned a latitudinal range from 33.6° S to 69.7° N. Globally, the average Carbonsq was 185.2 g/(m^2·yr) regardless of wetland types. Carbonsq varied remarkably between wetland types and ranked as an order of salt marsh(247.7 g/(m^2·yr)) > mangrove(229.8 g/(m^2·yr)) > freshwater marsh(196.7 g/(m^2·yr)) > peatland(76.9 g/(m^2·yr)). Carbonsq was positively related to mean annual temperature(AMT) and annual precipitation(Pre). Nitrogen was the most common and primary factor controlling Carbonsq regardless of wetland types.