With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport cha...Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.展开更多
Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(...Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products.展开更多
AIM:To evaluate the postoperative refractive prediction error(PE)and determine the factors that af fect the refractive outcomes of combined pars plana vitrectomy(PPV)or silicone oil removal(SOR)with cataract surgery.M...AIM:To evaluate the postoperative refractive prediction error(PE)and determine the factors that af fect the refractive outcomes of combined pars plana vitrectomy(PPV)or silicone oil removal(SOR)with cataract surgery.METHODS:The study is a retrospective,case-series study.Totally 301 eyes of 301 patients undergoing combined PPV/SOR with cataract surgery were enrolled.Eligible individuals were separated into four groups according to their preoperative diagnoses:silicone oil-filled eyes after PPV(group 1),epiretinal membrane(group 2),macular hole(group 3),and primary retinal detachment(RD;group 4).The variables af fecting postoperative refractive outcomes were analyzed,including age,gender,preoperative best-corrected visual acuity(BCVA),axial length(AL),keratometry average,anterior chamber depth(ACD),intraocular tamponade,and vitreoretinal pathology.The outcome measurements include the mean refractive PE and the proportions of eyes with a PE within±0.50 diopter(D)and±1.00 D.RESULTS:For all patients,the mean PE was-0.04±1.17 D,and 50.17%of patients(eyes)had a PE within±0.50 D.There was a significant difference in refractive outcomes among the four groups(P=0.028),with RD(group 4)showing the least favorable refractive outcome.In multivariate regression analysis,only AL,vitreoretinal pathology,and ACD were strongly associated with PE(all P<0.01).Univariate analysis revealed that longer eyes(AL>26 mm)and a deeper ACD were correlated with hyperopic PE,and shorter eyes(AL<26 mm)and a shallower ACD were correlated with myopic PE.CONCLUSION:RD patients have the least favorable refractive outcome.AL,vitreoretinal pathology,and ACD are strongly associated with PE in the combined surgery.These three factors affect refractive outcomes and thus can be used to predict a better postoperative refractive outcome in clinical practice.展开更多
Mobile Crowd Sensing(MCS)is an emerging paradigm that leverages sensor-equipped smart devices to collect data.The introduction of MCS also poses some challenges such as providing highquality data for upper layer MCS a...Mobile Crowd Sensing(MCS)is an emerging paradigm that leverages sensor-equipped smart devices to collect data.The introduction of MCS also poses some challenges such as providing highquality data for upper layer MCS applications,which requires adequate participants.However,recruiting enough participants to provide the sensing data for free is hard for the MCS platform under a limited budget,which may lead to a low coverage ratio of sensing area.This paper proposes a novel method to choose participants uniformly distributed in a specific sensing area based on the mobility patterns of mobile users.The method consists of two steps:(1)A second-order Markov chain is used to predict the next positions of users,and select users whose next places are in the target sensing area to form a candidate pool.(2)The Average Entropy(DAE)is proposed to measure the distribution of participants.The participant maximizing the DAE value of a specific sensing area with different granular sub-areas is chosen to maximize the coverage ratio of the sensing area.Experimental results show that the proposed method can maximize the coverage ratio of a sensing area under different partition granularities.展开更多
Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangle...Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.展开更多
水分解是一种利用可再生能源驱动的绿色制氢方法,零碳排放特性使其成为解决氢能源生产的重要途径.在电化学水分解中,制备高活性和稳定性的催化剂至关重要.高熵合金(HEAs)由于独特的结构和性能使其成为理想的催化剂材料,其多元成分和可...水分解是一种利用可再生能源驱动的绿色制氢方法,零碳排放特性使其成为解决氢能源生产的重要途径.在电化学水分解中,制备高活性和稳定性的催化剂至关重要.高熵合金(HEAs)由于独特的结构和性能使其成为理想的催化剂材料,其多元成分和可调组成提供了丰富的表面活性位点和灵活的催化特性,有望提高水分解的效率并降低成本.然而,简易高效地制备HEAs仍面临挑战,且目前对HEA催化剂的结构-活性关系的了解存在不足.因此,探索一种简便有效的方法用以制备高性能HEAs催化剂,并深入理解其在水分解反应中的作用机制和结构演变,能够为未来绿色制氢技术的发展提供重要的科学基础和技术支持.本文采用了电化学测量、CuK-边和PtL3-边的原位同步辐射X射线吸收光谱(XAS)测试以及密度泛函理论(DFT)计算相结合的方法,系统地研究了高熵合金电催化剂PtPdRhRuCu/C的析氢反应(HER)活性、反应机制以及结构演变规律.PtPdRhRuCu HEAs纳米颗粒由简便的一步溶剂热法制备,直径约为6.7±0.6 nm,其合金结构和元素分布通过多种表征手段(扫描透射电子显微镜、X射线衍射和能量色散X射线光谱等)得到确认.XAS对Cu K-边和PtL3-边的分析结果显示,HEAs纳米颗粒表面的少量铜氧化物在HER过程中被还原至金属态.扩展X射线吸收精细结构的拟合结果表明,HEAs在工况HER中保持了金属态和无序的原子排列,没有新的分离相形成.电化学测试结果表明,得益于多金属活性位点,PtPdRhRuCu/C催化剂在酸性和碱性条件下均表现出较好的HER活性和耐久性.在10 m Acm^(-2)的电流密度下,该催化剂在1molL^(-1)KOH中具有23.3 m V的极低过电位,优于商业Pt/C催化剂(50.3 m V),其质量活性是Pt/C的7.9倍,达到3.0 Amg^(-1)Pt.PtPdRhRuCu的高熵效应显著提升了催化剂在HER中的长期稳定性,在稳定性测试中,PtPdRhRuCu/C催化剂在10000次循环伏安测试后几乎无性能衰减,而Pt/C的过电位增加了约24 m V.在-55 m V过电位下的30 h的HER测试中,PtPdRhRuCu/C保持95.7%的初始电流密度,而Pt/C衰减了53.6%.在酸性条件下,PtPdRhRuCu/C的循环稳定性和耐久性也优于Pt/C.DFT计算结果表明,PtPdRhRuCu/C较好的HER性能和稳定性归因于高熵合金的协同效应,多金属成分提供了多样的活性位点,优化了HER反应路径,特别是在Volmer步骤中降低了水裂解的反应能垒.PtPdRhRuCu/C上的HER过程遵循Volmer-Tafel机理,水分子优先吸附在Ru位点,促进HO-H键的解离,解离出的质子迁移到Pt上,而OH通过Ru和Rh的桥接作用而稳定,最终在Cu上释放H2.综上,本文展示了高熵合金在HER中较好的性能,并通过详细的表征深入理解了其构-效关系.研究成果为高熵合金催化剂的合理设计和应用提供理论支持,为未来高效、耐久和低成本的绿色制氢技术提供重要的科学依据和技术支持.展开更多
The bimetallic nanostructures that mix a plasmonic metal with a transition metal in the form of the core-shell nanoparticles are promising to promote catalytic performance.But it is still unclear how the heat(hot elec...The bimetallic nanostructures that mix a plasmonic metal with a transition metal in the form of the core-shell nanoparticles are promising to promote catalytic performance.But it is still unclear how the heat(hot electrons and phonons)transfers on the interface between two metals.We have designed and synthesized Au@Cu bimetallic nanoparticles with Au as core and Cu as shell.By using transient absorption spectroscopy,we find that there are two plasmon induced heat funneling processes from Au core to Cu shell.One is the electron temperature equilibrium(electron heat transfer)with equilibration time of~560 fs.The other is the lattice temperature equilibrium(lattice heat transfer)with equilibration time of~13 ps.This plasmon induced heat funneling may be universal in similar bimetallic nanostructures,so our finding could contribute to further understanding the catalytic mechanism of bimetallic plasmonic photothermal catalysis.展开更多
BACKGROUND Pulmonary fibrosis(PF)is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation,causing structural damage and lung failure.Stem cell therapy and mes...BACKGROUND Pulmonary fibrosis(PF)is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation,causing structural damage and lung failure.Stem cell therapy and mesenchymal stem cells-extracellular vesicles(MSC-EVs)offer new hope for PF treatment.AIM To investigate the therapeutic potential of MSC-EVs in alleviating fibrosis,oxidative stress,and immune inflammation in A549 cells and bleomycin(BLM)-induced mouse model.METHODS The effect of MSC-EVs on A549 cells was assessed by fibrosis markers[collagen I andα-smooth muscle actin(α-SMA),oxidative stress regulators[nuclear factor E2-related factor 2(Nrf2)and heme oxygenase-1(HO-1),and inflammatory regu-lators[nuclear factor-kappaB(NF-κB)p65,interleukin(IL)-1β,and IL-2].Similarly,they were assessed in the lungs of mice where PF was induced by BLM after MSC-EV transfection.MSC-EVs ion PF mice were detected by pathological staining and western blot.Single-cell RNA sequencing was performed to investigate the effects of the MSC-EVs on gene expression profiles of macrophages after modeling in mice.RESULTS Transforming growth factor(TGF)-β1 enhanced fibrosis in A549 cells,significantly increasing collagen I andα-SMA levels.Notably,treatment with MSC-EVs demonstrated a remarkable alleviation of these effects.Similarly,the expression of oxidative stress regulators,such as Nrf2 and HO-1,along with inflammatory regulators,including NF-κB p65 and IL-1β,were mitigated by MSC-EV treatment.Furthermore,in a parallel manner,MSC-EVs exhibited a downregulatory impact on collagen deposition,oxidative stress injuries,and inflammatory-related cytokines in the lungs of mice with PF.Additionally,the mRNA sequencing results suggested that BLM may induce PF in mice by upregulating pulmonary collagen fiber deposition and triggering an immune inflammatory response.The findings collectively highlight the potential therapeutic efficacy of MSC-EVs in ameliorating fibrotic processes,oxidative stress,and inflammatory responses associated with PF.CONCLUSION MSC-EVs could ameliorate fibrosis in vitro and in vivo by downregulating collagen deposition,oxidative stress,and immune-inflammatory responses.展开更多
Background:Huoxue Tongjiang decoction(HXTJD)is an effective prescription for treating reflux esophagitis(RE).We investigated the effects of HXTJD on esophageal motility and mucosal inflammation in a rat RE model.Metho...Background:Huoxue Tongjiang decoction(HXTJD)is an effective prescription for treating reflux esophagitis(RE).We investigated the effects of HXTJD on esophageal motility and mucosal inflammation in a rat RE model.Methods:Chemical composition of HXTJD was analyzed by ultrahigh-performance liquid chromatography Q-Orbitrap mass spectrometry(MS).The change rates of mean contraction tension forces,mean amplitudes,and mean frequencies for the lower esophageal sphincter(LES)were recorded using the isolated tissue bath system,mechanical tension transducer,and PowerLab physiological recorder.After weighing the stomach,the phenol red labeling method was used to measure the gastric emptying rate.The LES ultrastructure was observed through transmission electron microscopy.Immunofluorescence and western blotting were used to detect the number of interstitial cells of Cajal(ICC)and the expression levels of c-kit protein,connexin43(Cx43),and stem cell factor(SCF).Flow cytometric analysis and enzyme-linked immunosorbent assay were conducted to detect the percentages of T helper 17(Th17)cells and regulatory T(Treg)cells and the serum concentrations of interleukin 6(IL-6),interleukin 17(IL-17),and interleukin 10(IL-10)in the rats.Results:We identified 28 chemical constituents in HXTJD.Regarding esophageal motility,we revealed that HXTJD increased the mean contraction tension forces,mean amplitudes,and mean frequency change rate of LES and the gastric emptying rate;decreased stomach weight;and improved the LES ultrastructure.Additionally,HXTJD increased the number of ICC-positive cells,and c-kit,Cx43,and SCF expression levels.Regarding esophageal inflammation,HXTJD significantly decreased the percentage of Th17 cells,and IL-6 and IL-17 concentrations,and increased the percentage of Treg cells and IL-10 concentration.Conclusion:HXTJD was found to be efficacious in the rat RE model.It may promote esophageal motility and alleviate the inflammatory response by activating the SCF/c-kit/ICC pathway and regulating the Th17/Treg cell balance.展开更多
Background Face image animation generates a synthetic human face video that harmoniously integrates the identity derived from the source image and facial motion obtained from the driving video.This technology could be...Background Face image animation generates a synthetic human face video that harmoniously integrates the identity derived from the source image and facial motion obtained from the driving video.This technology could be beneficial in multiple medical fields,such as diagnosis and privacy protection.Previous studies on face animation often relied on a single source image to generate an output video.With a significant pose difference between the source image and the driving frame,the quality of the generated video is likely to be suboptimal because the source image may not provide sufficient features for the warped feature map.Methods In this study,we propose a novel face-animation scheme based on multiple sources and perspective alignment to address these issues.We first introduce a multiple-source sampling and selection module to screen the optimal source image set from the provided driving video.We then propose an inter-frame interpolation and alignment module to further eliminate the misalignment between the selected source image and the driving frame.Conclusions The proposed method exhibits superior performance in terms of objective metrics and visual quality in large-angle animation scenes compared to other state-of-the-art face animation methods.It indicates the effectiveness of the proposed method in addressing the distortion issues in large-angle animation.展开更多
Flotation indexes gradually decrease with the increase of cycle time of the backwater in bauxite floatation,and discharge of backwater brings environmental risk.In this study,methods such as Fenton-oxidation,adsorptio...Flotation indexes gradually decrease with the increase of cycle time of the backwater in bauxite floatation,and discharge of backwater brings environmental risk.In this study,methods such as Fenton-oxidation,adsorption and coagulation were used in the treatment of backwater,the flotation indexes were checked after backwater treatments,and Box-Behnken design(BBD)was used in the optimization of the main operating parameters.The results reveal that flotation indexes are effectively improved after coagulation treatment by polyaluminum ferric chloride(PAFC).The optimum parameters predicted by BBD are pH 7.55,1.09 g/L PAFC dosage and temperature of 25℃.Under these optimum conditions,a maximum recovery of Al2O3 of 82.83%and a minimum A/S of 1.30 of tailings are gained,while the deviations are less than 3%from the predicted values.These findings encourage the application of BBD for the optimization of critical parameters in backwater treatment.展开更多
The activation of iron oxide Fischer–Tropsch Synthesis(FTS) catalysts was investigated during pretreatment: reduction in hydrogen followed by carburization in either CO or syngas mixture, or simultaneously reduction ...The activation of iron oxide Fischer–Tropsch Synthesis(FTS) catalysts was investigated during pretreatment: reduction in hydrogen followed by carburization in either CO or syngas mixture, or simultaneously reduction and carburization in syngas. A combination of different complementary in situ techniques was used to gain insight into the behavior of Fe-based FTS catalysts during activation. In situ XRD was used to identify the crystalline structures present during both reduction in hydrogen and carburization. An increase in reduction rate was established when increasing the temperature. A complete reduction was demonstrated in the ETEM and a grain size dependency was proven, i.e. bigger grains need higher temperature in order to reduce. XPS and XAS both indicate the formation of a small amount of carbonaceous species at the surface of the bulk metallic iron during carburization.展开更多
P2-type sodium layered oxide cathode (Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)P2-NNMO) has attracted great attention as a promising cathode material for sodium ion batteries because of its high specific capacity. However, this m...P2-type sodium layered oxide cathode (Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)P2-NNMO) has attracted great attention as a promising cathode material for sodium ion batteries because of its high specific capacity. However, this material suffers from a rapid capacity fade during high-voltage cycling. Several mechanisms have been proposed to explain the capacity fade, including intragranular fracture caused by the P2-O2 phase transion, surface structural change, and irreversible lattice oxygen release. Here we systematically investigated the morphological, structural, and chemical changes of P2-NNMO during high-voltage cycling using a variety of characterization techniques. It was found that the lattice distortion and crystal-plane buckling induced by the P2-O2 phase transition slowed down the Na-ion transport in the bulk and hindered the extraction of the Na ions. The sluggish kinetics was the main reason in reducing the accessible capacity while other interfacial degradation mechanisms played minor roles. Our results not only enabled a more complete understanding of the capacity-fading mechanism of P2-NNMO but also revealed the underlying correlations between lattice doping and the moderately improved cycle performance.展开更多
Objective: The aim of the study was to compare the hematologic toxicity of gemcitabine between fixed-dose rate (FDR) infusion and 30-minute standard infusion in the treatment of malignancy. Methods: The 25 maligna...Objective: The aim of the study was to compare the hematologic toxicity of gemcitabine between fixed-dose rate (FDR) infusion and 30-minute standard infusion in the treatment of malignancy. Methods: The 25 malignancy patients confirmed by histopathology or cytology received single-agent gemcitabine or gemcitabine in combination with other chemo- therapeutic agents. These patients were randomly divided into gemcitabine 1000 mg/m2 on dl, d8 at a rate of 10 mg/m2/min arm (FDR arm) or 30 rain arm (standard arm), every 21 days one cycle. Hematologic toxicity was evaluated at the end of each cycle. Results: The 13 of 25 patients received gemcitabine FDR therapy, a total of 28 cycles was completed, and 32 cycles in the others (12 of 25 patients) with the standard arm. All patients were evaluable for hematologic toxicity. The result showed that the grades 3-4 leucopenia was significantly different between the two arms (14.3% vs 0, P 〈 0.05), and no significant differences of neutropenia, thrombocytopenia and hemoglobin suppression of grades 3-4 (14.3% vs 3.1%, 10.7% vs 3.1%, 3.6% vs 9.4%, P 〉 0.05, respectively) were observed between the two arms, no grade 4 of hemoglobin suppression was observed. Conclusion: Hematologic toxicity of gemcitabine therapy at a fixed-dose rate for malignancy is tolerable.展开更多
To study the effect ofrhein on embryo development of rats and fetuscs, the SD rats were divided into rhein (87.5, 175 and 350 mg/kg) group and negative control group treated with 0.5% CMC (carboxyl methyl cellulose...To study the effect ofrhein on embryo development of rats and fetuscs, the SD rats were divided into rhein (87.5, 175 and 350 mg/kg) group and negative control group treated with 0.5% CMC (carboxyl methyl cellulose). The rats were administrated with rhein daily for 10 days from 6th to 15th day after pregnancy. The pregnancy rats were dissected at 20th day after pregnancy. The total weight of the fetuses, the number of corpus luteum, plant gland, absorbed fetus, live fetus, dead futus, monsters, body weight, body height and tail length were recorded. Compared with the control group, rhein group occurred with the administration of toxicity-related clinical symptoms. The changes in weight increase related with the amount ofrhein (P 〈 0.05) and the increased number of absorbed fetuses in each rhein group (P 〈 0.05) were presented. Obvious differences occurred in the rhein groups in terms of the incidence of visceral abnormalities, each organ abnormalities and fossa malformations, etc. (P 〈 0.05). Compared with the control group, there was no significant difference in the low-dose group by fetal rat bone examination (P 〉 0.05), while the remaining dose groups manifested various bone deformities such as sternum sections missing, incomplete ossification of the skull and thoracic vertebrae separation or deformation, which was obviously different from the control group (P 〈 0.01). Rhein had a significant effect on the reproductive function of pregnant rats. It can even result in the bones' and internal organs' dysplasia of fetal rats. Rhein has a significant teratogenic effect in rats.展开更多
As an important part of traditional Chinese medicine (TCM) nursing technology, moxibustion plays a unique role in improving the symptoms of ankylosing spondylitis (AS). The research on the mechanism of moxibustion int...As an important part of traditional Chinese medicine (TCM) nursing technology, moxibustion plays a unique role in improving the symptoms of ankylosing spondylitis (AS). The research on the mechanism of moxibustion intervention in AS mainly focuses on anti-inflammatory effects, immune regulation, bone metabolism regulation, intestinal flora regulation, and so on. Molecular medicine is of great significance to further clarify the mechanism of moxibustion intervention in AS. However, there are still some problems in the research on the molecular mechanism of moxibustion intervention in AS: the existing biomedical research methods only explore from a specific field and lack the exploration of moxibustion-targeted molecules based on biomedical network. In the future, the molecular network effect of moxibustion on AS can be discussed comprehensively and systematically with the help of omics technology and the construction of biological information interaction network between omics. The effect of moxibustion on upstream osteogenic transcription factors and related signaling pathways such as WNT, β-catenin, and BMP/Smads is not yet clear. Future research can focus on the relevant signal targets of bone reconstruction and clarify the mechanism of moxibustion against the new bone formation. In addition, there is a lack of research on the molecular mechanism of moxibustion in the treatment of AS from the perspective of metabolites. It is necessary to further explore the mechanism of moxibustion in the treatment of AS with the help of metabonomics technology.展开更多
Exosomes,as promising vehicles,have been widely used in the research of oral drug delivery,but the generally low drug loading efficiency of exosomes seriously limits its application and transformation.In this study,we...Exosomes,as promising vehicles,have been widely used in the research of oral drug delivery,but the generally low drug loading efficiency of exosomes seriously limits its application and transformation.In this study,we systematically investigated the effects of drug loading methods and physicochemical properties(lipophilicity and molecular weight)on drug loading efficiency of milk-derived exosomes to explore the most appropriate loading conditions.Our finding revealed that the drug loading efficiency of exosomes was closely related to the drug loading method,drug lipophilicity,drug molecular weight and exosome/drug proportions.Of note,we demonstrated the universality that hydrophilic biomacromolecule drugs were the most appropriate loading drugs for milk-derived exosomes,which was attributed to the efficient loading capacity and sustained release behavior.Furthermore,milk-derived exosomes could significantly improve the transepithelial transport and oral bioavailability of model hydrophilic biomacromolecule drugs(octreotide,exendin-4 and salmon calcitonin).Collectively,our results suggested that the encapsulation of hydrophilic biomacromolecule drugs might be the most promising direction for milk exosomes as oral drug delivery vehicles.展开更多
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金supported by the National Key R&D Program of China(2022YFA2105900)the National Natural Science Foundation of China(22178197)。
文摘Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.
基金supported by the National Key R&D Program of China(2022YFA2105900)the National Natural Science Foundation of China(No.22178197)。
文摘Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products.
基金Supported by the National Natural Science Foundation of China (No.81770972,No.81970843)。
文摘AIM:To evaluate the postoperative refractive prediction error(PE)and determine the factors that af fect the refractive outcomes of combined pars plana vitrectomy(PPV)or silicone oil removal(SOR)with cataract surgery.METHODS:The study is a retrospective,case-series study.Totally 301 eyes of 301 patients undergoing combined PPV/SOR with cataract surgery were enrolled.Eligible individuals were separated into four groups according to their preoperative diagnoses:silicone oil-filled eyes after PPV(group 1),epiretinal membrane(group 2),macular hole(group 3),and primary retinal detachment(RD;group 4).The variables af fecting postoperative refractive outcomes were analyzed,including age,gender,preoperative best-corrected visual acuity(BCVA),axial length(AL),keratometry average,anterior chamber depth(ACD),intraocular tamponade,and vitreoretinal pathology.The outcome measurements include the mean refractive PE and the proportions of eyes with a PE within±0.50 diopter(D)and±1.00 D.RESULTS:For all patients,the mean PE was-0.04±1.17 D,and 50.17%of patients(eyes)had a PE within±0.50 D.There was a significant difference in refractive outcomes among the four groups(P=0.028),with RD(group 4)showing the least favorable refractive outcome.In multivariate regression analysis,only AL,vitreoretinal pathology,and ACD were strongly associated with PE(all P<0.01).Univariate analysis revealed that longer eyes(AL>26 mm)and a deeper ACD were correlated with hyperopic PE,and shorter eyes(AL<26 mm)and a shallower ACD were correlated with myopic PE.CONCLUSION:RD patients have the least favorable refractive outcome.AL,vitreoretinal pathology,and ACD are strongly associated with PE in the combined surgery.These three factors affect refractive outcomes and thus can be used to predict a better postoperative refractive outcome in clinical practice.
基金supported by the Open Foundation of State key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(SKLNST-2021-1-18)the General Program of Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX1021)+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202000602)Chongqing graduate research and innovation project(CYS22478).
文摘Mobile Crowd Sensing(MCS)is an emerging paradigm that leverages sensor-equipped smart devices to collect data.The introduction of MCS also poses some challenges such as providing highquality data for upper layer MCS applications,which requires adequate participants.However,recruiting enough participants to provide the sensing data for free is hard for the MCS platform under a limited budget,which may lead to a low coverage ratio of sensing area.This paper proposes a novel method to choose participants uniformly distributed in a specific sensing area based on the mobility patterns of mobile users.The method consists of two steps:(1)A second-order Markov chain is used to predict the next positions of users,and select users whose next places are in the target sensing area to form a candidate pool.(2)The Average Entropy(DAE)is proposed to measure the distribution of participants.The participant maximizing the DAE value of a specific sensing area with different granular sub-areas is chosen to maximize the coverage ratio of the sensing area.Experimental results show that the proposed method can maximize the coverage ratio of a sensing area under different partition granularities.
基金supported by a grant from Key Laboratory of Alzheimer's Disease of Zhejiang Province,Institute of Aging,Wenzhou Medical University,No.ZJAD-2021002(to ZW)。
文摘Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.
文摘水分解是一种利用可再生能源驱动的绿色制氢方法,零碳排放特性使其成为解决氢能源生产的重要途径.在电化学水分解中,制备高活性和稳定性的催化剂至关重要.高熵合金(HEAs)由于独特的结构和性能使其成为理想的催化剂材料,其多元成分和可调组成提供了丰富的表面活性位点和灵活的催化特性,有望提高水分解的效率并降低成本.然而,简易高效地制备HEAs仍面临挑战,且目前对HEA催化剂的结构-活性关系的了解存在不足.因此,探索一种简便有效的方法用以制备高性能HEAs催化剂,并深入理解其在水分解反应中的作用机制和结构演变,能够为未来绿色制氢技术的发展提供重要的科学基础和技术支持.本文采用了电化学测量、CuK-边和PtL3-边的原位同步辐射X射线吸收光谱(XAS)测试以及密度泛函理论(DFT)计算相结合的方法,系统地研究了高熵合金电催化剂PtPdRhRuCu/C的析氢反应(HER)活性、反应机制以及结构演变规律.PtPdRhRuCu HEAs纳米颗粒由简便的一步溶剂热法制备,直径约为6.7±0.6 nm,其合金结构和元素分布通过多种表征手段(扫描透射电子显微镜、X射线衍射和能量色散X射线光谱等)得到确认.XAS对Cu K-边和PtL3-边的分析结果显示,HEAs纳米颗粒表面的少量铜氧化物在HER过程中被还原至金属态.扩展X射线吸收精细结构的拟合结果表明,HEAs在工况HER中保持了金属态和无序的原子排列,没有新的分离相形成.电化学测试结果表明,得益于多金属活性位点,PtPdRhRuCu/C催化剂在酸性和碱性条件下均表现出较好的HER活性和耐久性.在10 m Acm^(-2)的电流密度下,该催化剂在1molL^(-1)KOH中具有23.3 m V的极低过电位,优于商业Pt/C催化剂(50.3 m V),其质量活性是Pt/C的7.9倍,达到3.0 Amg^(-1)Pt.PtPdRhRuCu的高熵效应显著提升了催化剂在HER中的长期稳定性,在稳定性测试中,PtPdRhRuCu/C催化剂在10000次循环伏安测试后几乎无性能衰减,而Pt/C的过电位增加了约24 m V.在-55 m V过电位下的30 h的HER测试中,PtPdRhRuCu/C保持95.7%的初始电流密度,而Pt/C衰减了53.6%.在酸性条件下,PtPdRhRuCu/C的循环稳定性和耐久性也优于Pt/C.DFT计算结果表明,PtPdRhRuCu/C较好的HER性能和稳定性归因于高熵合金的协同效应,多金属成分提供了多样的活性位点,优化了HER反应路径,特别是在Volmer步骤中降低了水裂解的反应能垒.PtPdRhRuCu/C上的HER过程遵循Volmer-Tafel机理,水分子优先吸附在Ru位点,促进HO-H键的解离,解离出的质子迁移到Pt上,而OH通过Ru和Rh的桥接作用而稳定,最终在Cu上释放H2.综上,本文展示了高熵合金在HER中较好的性能,并通过详细的表征深入理解了其构-效关系.研究成果为高熵合金催化剂的合理设计和应用提供理论支持,为未来高效、耐久和低成本的绿色制氢技术提供重要的科学依据和技术支持.
基金supported by the National Naural Science Foudation of China(No.21873013 and No.22273006).
文摘The bimetallic nanostructures that mix a plasmonic metal with a transition metal in the form of the core-shell nanoparticles are promising to promote catalytic performance.But it is still unclear how the heat(hot electrons and phonons)transfers on the interface between two metals.We have designed and synthesized Au@Cu bimetallic nanoparticles with Au as core and Cu as shell.By using transient absorption spectroscopy,we find that there are two plasmon induced heat funneling processes from Au core to Cu shell.One is the electron temperature equilibrium(electron heat transfer)with equilibration time of~560 fs.The other is the lattice temperature equilibrium(lattice heat transfer)with equilibration time of~13 ps.This plasmon induced heat funneling may be universal in similar bimetallic nanostructures,so our finding could contribute to further understanding the catalytic mechanism of bimetallic plasmonic photothermal catalysis.
基金Supported by Xi’an Science and Technology Plan Project,No.20200001YX001(1)Xi’an Talent Plan-Elite(Innovative Talents)Project,No.XAYC210062.
文摘BACKGROUND Pulmonary fibrosis(PF)is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation,causing structural damage and lung failure.Stem cell therapy and mesenchymal stem cells-extracellular vesicles(MSC-EVs)offer new hope for PF treatment.AIM To investigate the therapeutic potential of MSC-EVs in alleviating fibrosis,oxidative stress,and immune inflammation in A549 cells and bleomycin(BLM)-induced mouse model.METHODS The effect of MSC-EVs on A549 cells was assessed by fibrosis markers[collagen I andα-smooth muscle actin(α-SMA),oxidative stress regulators[nuclear factor E2-related factor 2(Nrf2)and heme oxygenase-1(HO-1),and inflammatory regu-lators[nuclear factor-kappaB(NF-κB)p65,interleukin(IL)-1β,and IL-2].Similarly,they were assessed in the lungs of mice where PF was induced by BLM after MSC-EV transfection.MSC-EVs ion PF mice were detected by pathological staining and western blot.Single-cell RNA sequencing was performed to investigate the effects of the MSC-EVs on gene expression profiles of macrophages after modeling in mice.RESULTS Transforming growth factor(TGF)-β1 enhanced fibrosis in A549 cells,significantly increasing collagen I andα-SMA levels.Notably,treatment with MSC-EVs demonstrated a remarkable alleviation of these effects.Similarly,the expression of oxidative stress regulators,such as Nrf2 and HO-1,along with inflammatory regulators,including NF-κB p65 and IL-1β,were mitigated by MSC-EV treatment.Furthermore,in a parallel manner,MSC-EVs exhibited a downregulatory impact on collagen deposition,oxidative stress injuries,and inflammatory-related cytokines in the lungs of mice with PF.Additionally,the mRNA sequencing results suggested that BLM may induce PF in mice by upregulating pulmonary collagen fiber deposition and triggering an immune inflammatory response.The findings collectively highlight the potential therapeutic efficacy of MSC-EVs in ameliorating fibrotic processes,oxidative stress,and inflammatory responses associated with PF.CONCLUSION MSC-EVs could ameliorate fibrosis in vitro and in vivo by downregulating collagen deposition,oxidative stress,and immune-inflammatory responses.
基金supported by the National Natural Science Foundation of China(No.81573737 and 82074213)the science foundation of Tianjin Municipal Health Bureau(No.2023169 and 2021045)the Tianjin Municipal Health Commission Science and Technology Project(No.TJWJ2022QN057).
文摘Background:Huoxue Tongjiang decoction(HXTJD)is an effective prescription for treating reflux esophagitis(RE).We investigated the effects of HXTJD on esophageal motility and mucosal inflammation in a rat RE model.Methods:Chemical composition of HXTJD was analyzed by ultrahigh-performance liquid chromatography Q-Orbitrap mass spectrometry(MS).The change rates of mean contraction tension forces,mean amplitudes,and mean frequencies for the lower esophageal sphincter(LES)were recorded using the isolated tissue bath system,mechanical tension transducer,and PowerLab physiological recorder.After weighing the stomach,the phenol red labeling method was used to measure the gastric emptying rate.The LES ultrastructure was observed through transmission electron microscopy.Immunofluorescence and western blotting were used to detect the number of interstitial cells of Cajal(ICC)and the expression levels of c-kit protein,connexin43(Cx43),and stem cell factor(SCF).Flow cytometric analysis and enzyme-linked immunosorbent assay were conducted to detect the percentages of T helper 17(Th17)cells and regulatory T(Treg)cells and the serum concentrations of interleukin 6(IL-6),interleukin 17(IL-17),and interleukin 10(IL-10)in the rats.Results:We identified 28 chemical constituents in HXTJD.Regarding esophageal motility,we revealed that HXTJD increased the mean contraction tension forces,mean amplitudes,and mean frequency change rate of LES and the gastric emptying rate;decreased stomach weight;and improved the LES ultrastructure.Additionally,HXTJD increased the number of ICC-positive cells,and c-kit,Cx43,and SCF expression levels.Regarding esophageal inflammation,HXTJD significantly decreased the percentage of Th17 cells,and IL-6 and IL-17 concentrations,and increased the percentage of Treg cells and IL-10 concentration.Conclusion:HXTJD was found to be efficacious in the rat RE model.It may promote esophageal motility and alleviate the inflammatory response by activating the SCF/c-kit/ICC pathway and regulating the Th17/Treg cell balance.
基金the Fund from Sichuan Provincial Key Laboratory of Intelligent Terminals(SCITLAB-20016).
文摘Background Face image animation generates a synthetic human face video that harmoniously integrates the identity derived from the source image and facial motion obtained from the driving video.This technology could be beneficial in multiple medical fields,such as diagnosis and privacy protection.Previous studies on face animation often relied on a single source image to generate an output video.With a significant pose difference between the source image and the driving frame,the quality of the generated video is likely to be suboptimal because the source image may not provide sufficient features for the warped feature map.Methods In this study,we propose a novel face-animation scheme based on multiple sources and perspective alignment to address these issues.We first introduce a multiple-source sampling and selection module to screen the optimal source image set from the provided driving video.We then propose an inter-frame interpolation and alignment module to further eliminate the misalignment between the selected source image and the driving frame.Conclusions The proposed method exhibits superior performance in terms of objective metrics and visual quality in large-angle animation scenes compared to other state-of-the-art face animation methods.It indicates the effectiveness of the proposed method in addressing the distortion issues in large-angle animation.
基金Project(1053320170205)supported by the Research and Innovation Project of Graduate Students of Central South University,ChinaProject(502211704)supported by the Fundamental Research Funds for the Central Universities,China+3 种基金Project(SKL-SPM-201809)supported by the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals,ChinaProject(SKLAM005-2016)supported by the State Key Laboratory of Applied Microbiology Southern ChinaProjects(51320105006,51504106,51871250)supported by the National Natural Science Foundation of ChinaProject(2015FB204)supported by the Science and Technology Project of Yunnan Province,China
文摘Flotation indexes gradually decrease with the increase of cycle time of the backwater in bauxite floatation,and discharge of backwater brings environmental risk.In this study,methods such as Fenton-oxidation,adsorption and coagulation were used in the treatment of backwater,the flotation indexes were checked after backwater treatments,and Box-Behnken design(BBD)was used in the optimization of the main operating parameters.The results reveal that flotation indexes are effectively improved after coagulation treatment by polyaluminum ferric chloride(PAFC).The optimum parameters predicted by BBD are pH 7.55,1.09 g/L PAFC dosage and temperature of 25℃.Under these optimum conditions,a maximum recovery of Al2O3 of 82.83%and a minimum A/S of 1.30 of tailings are gained,while the deviations are less than 3%from the predicted values.These findings encourage the application of BBD for the optimization of critical parameters in backwater treatment.
基金supported by the “Villum Center for the Science of Sustainable Fuels and Chemicals” (V-Sustain, grant number 9455) research initiative funded by the VILLUM FONDEN。
文摘The activation of iron oxide Fischer–Tropsch Synthesis(FTS) catalysts was investigated during pretreatment: reduction in hydrogen followed by carburization in either CO or syngas mixture, or simultaneously reduction and carburization in syngas. A combination of different complementary in situ techniques was used to gain insight into the behavior of Fe-based FTS catalysts during activation. In situ XRD was used to identify the crystalline structures present during both reduction in hydrogen and carburization. An increase in reduction rate was established when increasing the temperature. A complete reduction was demonstrated in the ETEM and a grain size dependency was proven, i.e. bigger grains need higher temperature in order to reduce. XPS and XAS both indicate the formation of a small amount of carbonaceous species at the surface of the bulk metallic iron during carburization.
基金financial support from the National Natural Science Foundation of China (21938005, 21573147, 22005190, 22008154, 21872163)the Science & Technology Commission of Shanghai Municipality, the Natural Science Foundation of Shanghai (19DZ1205500, 19ZR1424600, 19ZR1475100)the Sichuan Science and Technology Program (2021JDRC0015 to L.S.L)。
文摘P2-type sodium layered oxide cathode (Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)P2-NNMO) has attracted great attention as a promising cathode material for sodium ion batteries because of its high specific capacity. However, this material suffers from a rapid capacity fade during high-voltage cycling. Several mechanisms have been proposed to explain the capacity fade, including intragranular fracture caused by the P2-O2 phase transion, surface structural change, and irreversible lattice oxygen release. Here we systematically investigated the morphological, structural, and chemical changes of P2-NNMO during high-voltage cycling using a variety of characterization techniques. It was found that the lattice distortion and crystal-plane buckling induced by the P2-O2 phase transition slowed down the Na-ion transport in the bulk and hindered the extraction of the Na ions. The sluggish kinetics was the main reason in reducing the accessible capacity while other interfacial degradation mechanisms played minor roles. Our results not only enabled a more complete understanding of the capacity-fading mechanism of P2-NNMO but also revealed the underlying correlations between lattice doping and the moderately improved cycle performance.
基金sponsored by the National Key Research and Development Program of China(No.2018YFB0704400)Key Research Project of Zhejiang Laboratory,China(No.2021PE0AC02)+1 种基金Key Program of Science and Technology of Yunnan Province,China(Nos.202002AB080001-2,202102AB080019-3)Key Project of Shanghai Zhangjiang National Independent Innovation Demonstration Zone,China(No.ZJ2021-ZD-006)。
基金Supported by the grants of the National Natural Science Foundation of China(No.30872591)Shanghai Science and Technology Commission(No.02.04.11.006)
文摘Objective: The aim of the study was to compare the hematologic toxicity of gemcitabine between fixed-dose rate (FDR) infusion and 30-minute standard infusion in the treatment of malignancy. Methods: The 25 malignancy patients confirmed by histopathology or cytology received single-agent gemcitabine or gemcitabine in combination with other chemo- therapeutic agents. These patients were randomly divided into gemcitabine 1000 mg/m2 on dl, d8 at a rate of 10 mg/m2/min arm (FDR arm) or 30 rain arm (standard arm), every 21 days one cycle. Hematologic toxicity was evaluated at the end of each cycle. Results: The 13 of 25 patients received gemcitabine FDR therapy, a total of 28 cycles was completed, and 32 cycles in the others (12 of 25 patients) with the standard arm. All patients were evaluable for hematologic toxicity. The result showed that the grades 3-4 leucopenia was significantly different between the two arms (14.3% vs 0, P 〈 0.05), and no significant differences of neutropenia, thrombocytopenia and hemoglobin suppression of grades 3-4 (14.3% vs 3.1%, 10.7% vs 3.1%, 3.6% vs 9.4%, P 〉 0.05, respectively) were observed between the two arms, no grade 4 of hemoglobin suppression was observed. Conclusion: Hematologic toxicity of gemcitabine therapy at a fixed-dose rate for malignancy is tolerable.
文摘To study the effect ofrhein on embryo development of rats and fetuscs, the SD rats were divided into rhein (87.5, 175 and 350 mg/kg) group and negative control group treated with 0.5% CMC (carboxyl methyl cellulose). The rats were administrated with rhein daily for 10 days from 6th to 15th day after pregnancy. The pregnancy rats were dissected at 20th day after pregnancy. The total weight of the fetuses, the number of corpus luteum, plant gland, absorbed fetus, live fetus, dead futus, monsters, body weight, body height and tail length were recorded. Compared with the control group, rhein group occurred with the administration of toxicity-related clinical symptoms. The changes in weight increase related with the amount ofrhein (P 〈 0.05) and the increased number of absorbed fetuses in each rhein group (P 〈 0.05) were presented. Obvious differences occurred in the rhein groups in terms of the incidence of visceral abnormalities, each organ abnormalities and fossa malformations, etc. (P 〈 0.05). Compared with the control group, there was no significant difference in the low-dose group by fetal rat bone examination (P 〉 0.05), while the remaining dose groups manifested various bone deformities such as sternum sections missing, incomplete ossification of the skull and thoracic vertebrae separation or deformation, which was obviously different from the control group (P 〈 0.01). Rhein had a significant effect on the reproductive function of pregnant rats. It can even result in the bones' and internal organs' dysplasia of fetal rats. Rhein has a significant teratogenic effect in rats.
基金supported by the National Natural Science Foundation of China(81904274).
文摘As an important part of traditional Chinese medicine (TCM) nursing technology, moxibustion plays a unique role in improving the symptoms of ankylosing spondylitis (AS). The research on the mechanism of moxibustion intervention in AS mainly focuses on anti-inflammatory effects, immune regulation, bone metabolism regulation, intestinal flora regulation, and so on. Molecular medicine is of great significance to further clarify the mechanism of moxibustion intervention in AS. However, there are still some problems in the research on the molecular mechanism of moxibustion intervention in AS: the existing biomedical research methods only explore from a specific field and lack the exploration of moxibustion-targeted molecules based on biomedical network. In the future, the molecular network effect of moxibustion on AS can be discussed comprehensively and systematically with the help of omics technology and the construction of biological information interaction network between omics. The effect of moxibustion on upstream osteogenic transcription factors and related signaling pathways such as WNT, β-catenin, and BMP/Smads is not yet clear. Future research can focus on the relevant signal targets of bone reconstruction and clarify the mechanism of moxibustion against the new bone formation. In addition, there is a lack of research on the molecular mechanism of moxibustion in the treatment of AS from the perspective of metabolites. It is necessary to further explore the mechanism of moxibustion in the treatment of AS with the help of metabonomics technology.
基金The authors gratefully acknowledge financial support from National Natural Science Foundation of China(81872818)National Key R&D Program of China(2021YFE0115200).
文摘Exosomes,as promising vehicles,have been widely used in the research of oral drug delivery,but the generally low drug loading efficiency of exosomes seriously limits its application and transformation.In this study,we systematically investigated the effects of drug loading methods and physicochemical properties(lipophilicity and molecular weight)on drug loading efficiency of milk-derived exosomes to explore the most appropriate loading conditions.Our finding revealed that the drug loading efficiency of exosomes was closely related to the drug loading method,drug lipophilicity,drug molecular weight and exosome/drug proportions.Of note,we demonstrated the universality that hydrophilic biomacromolecule drugs were the most appropriate loading drugs for milk-derived exosomes,which was attributed to the efficient loading capacity and sustained release behavior.Furthermore,milk-derived exosomes could significantly improve the transepithelial transport and oral bioavailability of model hydrophilic biomacromolecule drugs(octreotide,exendin-4 and salmon calcitonin).Collectively,our results suggested that the encapsulation of hydrophilic biomacromolecule drugs might be the most promising direction for milk exosomes as oral drug delivery vehicles.