As a form of artificial intelligence,artificial neural networks(ANNs)have the advantages of adaptability,parallel processing capabilities,and non-linear processing.They have been widely used in the early detection and...As a form of artificial intelligence,artificial neural networks(ANNs)have the advantages of adaptability,parallel processing capabilities,and non-linear processing.They have been widely used in the early detection and diagnosis of tumors.In this article,we introduce the development,working principle,and characteristics of ANNs and review the research progress on the application of ANNs in the detection and diagnosis of gastrointestinal and liver tumors.展开更多
Janmark, Meyer, and Wong showed that continuous-time quantum walk search on known families of strongly regular graphs(SRGs) with parameters(N, k, λ, μ) achieves full quantum speedup. The problem is reconsidered ...Janmark, Meyer, and Wong showed that continuous-time quantum walk search on known families of strongly regular graphs(SRGs) with parameters(N, k, λ, μ) achieves full quantum speedup. The problem is reconsidered in terms of scattering quantum walk, a type of discrete-time quantum walks. Here, the search space is confined to a low-dimensional subspace corresponding to the collapsed graph of SRGs. To quantify the algorithm's performance, we leverage the fundamental pairing theorem, a general theory developed by Cottrell for quantum search of structural anomalies in star graphs.The search algorithm on the SRGs with k scales as N satisfies the theorem, and results can be immediately obtained, while search on the SRGs with k scales as√N does not satisfy the theorem, and matrix perturbation theory is used to provide an analysis. Both these cases can be solved in O(√N) time steps with a success probability close to 1. The analytical conclusions are verified by simulation results on two SRGs. These examples show that the formalism on star graphs can be applied more generally.展开更多
Perfect state transfer(PST)has great significance due to its applications in quantum information processing and quantum computation.The main problem we study in this paper is to determine whether the two-fold Cayley t...Perfect state transfer(PST)has great significance due to its applications in quantum information processing and quantum computation.The main problem we study in this paper is to determine whether the two-fold Cayley tree,an extension of the Cayley tree,admits perfect state transfer between two roots using quantum walks.We show that PST can be achieved by means of the so-called nonrepeating quantum walk[Phys.Rev.A 89042332(2014)]within time steps that are the distance between the two roots;while both the continuous-time quantum walk and the typical discrete-time quantum walk with Grover coin approaches fail.Our results suggest that in some cases the dynamics of a discrete-time quantum walk may be much richer than that of the continuous-time quantum walk.展开更多
文摘As a form of artificial intelligence,artificial neural networks(ANNs)have the advantages of adaptability,parallel processing capabilities,and non-linear processing.They have been widely used in the early detection and diagnosis of tumors.In this article,we introduce the development,working principle,and characteristics of ANNs and review the research progress on the application of ANNs in the detection and diagnosis of gastrointestinal and liver tumors.
基金supported by the National Natural Science Foundation of China(Grant Nos.61502101 and 61170321)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20140651)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110092110024)
文摘Janmark, Meyer, and Wong showed that continuous-time quantum walk search on known families of strongly regular graphs(SRGs) with parameters(N, k, λ, μ) achieves full quantum speedup. The problem is reconsidered in terms of scattering quantum walk, a type of discrete-time quantum walks. Here, the search space is confined to a low-dimensional subspace corresponding to the collapsed graph of SRGs. To quantify the algorithm's performance, we leverage the fundamental pairing theorem, a general theory developed by Cottrell for quantum search of structural anomalies in star graphs.The search algorithm on the SRGs with k scales as N satisfies the theorem, and results can be immediately obtained, while search on the SRGs with k scales as√N does not satisfy the theorem, and matrix perturbation theory is used to provide an analysis. Both these cases can be solved in O(√N) time steps with a success probability close to 1. The analytical conclusions are verified by simulation results on two SRGs. These examples show that the formalism on star graphs can be applied more generally.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61802002 and 61701004)the Natural Science Foundation of Anhui Province,China(Grant No.1708085MF162)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20171458)。
文摘Perfect state transfer(PST)has great significance due to its applications in quantum information processing and quantum computation.The main problem we study in this paper is to determine whether the two-fold Cayley tree,an extension of the Cayley tree,admits perfect state transfer between two roots using quantum walks.We show that PST can be achieved by means of the so-called nonrepeating quantum walk[Phys.Rev.A 89042332(2014)]within time steps that are the distance between the two roots;while both the continuous-time quantum walk and the typical discrete-time quantum walk with Grover coin approaches fail.Our results suggest that in some cases the dynamics of a discrete-time quantum walk may be much richer than that of the continuous-time quantum walk.