期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
3D DEM simulation of hard rock fracture in deep tunnel excavation induced by changes in principal stress magnitude and orientation 被引量:1
1
作者 Weiqi Wang xia-ting feng +2 位作者 Qihu Wang Rui Kong Chengxiang Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3870-3884,共15页
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ... To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress. 展开更多
关键词 Deep hard rock tunnel Three-dimensional(3D)discrete element model(DEM) Magnitude and orientation of principal stress Transient unloading Fracture mechanism
下载PDF
A multifunctional shear apparatus for rocks subjected to true triaxial stress and high temperature in real-time 被引量:1
2
作者 Jun Zhao xia-ting feng +2 位作者 Jia-Rong Wang Liang Hu Yue Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3524-3543,共20页
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic... Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress. 展开更多
关键词 True-triaxial shear apparatus ROCKS Complete shear stress-deformation process CREEP Real-time high-temperature
下载PDF
Field test of high-power microwave-assisted mechanical excavation for deep hard iron ore 被引量:1
3
作者 feng Lin xia-ting feng +5 位作者 Shiping Li Xiao Hai Jiuyu Zhang Xiangxin Su Tianyang Tong Jianchun Song 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1922-1935,共14页
Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re... Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used. 展开更多
关键词 Microwave parameters High power Field experiment Mechanical mining
下载PDF
Evolution of mechanical parameters of Shuangjiangkou granite under different loading cycles and stress paths
4
作者 Liangjie Gu xia-ting feng +2 位作者 Rui Kong Chengxiang Yang Yuelin Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1113-1126,共14页
Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock und... Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed. 展开更多
关键词 Triaxial cyclic loading and unloading test Stress path Deformation modulus and elastic deformation increment ratios Fracture degree Cohesion and internal friction angle
下载PDF
Development of high-power microwave mechanical integrated continuous mining device
5
作者 xia-ting feng feng Lin +3 位作者 Jiuyu Zhang Chengxiang Yang Yuntan Ao Tianyang Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3365-3377,共13页
This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotar... This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotary translation system,a loading system,a high-power microwave system,and a control and monitoring system.The technology of“master-slave follow-up”disc cutter alternating side cutting of rock was proposed,which could improve the effectiveness of rock breaking.The integrated structure of a microwave-cut system was then proposed,and synchronous motion of the microwave-cut system and adjustment of the loading system could be realized.The automatic adjustment technology of the microwave working distance was developed to dynamically control the optimal microwave working distance.The basic functions of the equipment were verified by tests.By comparing the two types of disk cutters,it is found that the master-slave follow-up disk cutter can improve significantly the dust removal effect and rock breaking efficiency in rock breaking process versus the conventional large disc cutter.Cutting tests of slate with or without microwave were conducted using a master-slave follow-up disk cutter.The results show that the cutting patterns of slates change from intermittent chunks(without microwave irradiation)to persistent debris(with microwave irradiation),and the cutting speed is significantly improved(170%).The development of the device provides a scientific basis for changing the conventional mining technology of metal mines and realizing the mechanical continuous mining in hard metal mines. 展开更多
关键词 Hard metal mine Microwave machinery Continuous mining Master-slave follow-up disc cutter
下载PDF
A testing system to understand rock fracturing processes induced by different dynamic disturbances under true triaxial compression 被引量:4
6
作者 xia-ting feng Mian Tian +1 位作者 Chengxiang Yang Benguo He 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期102-118,共17页
In this context,a testing system to understand rock fracturing processes induced by different dynamic disturbances under true triaxial compression was developed.The system is mainly composed of a static loading subsys... In this context,a testing system to understand rock fracturing processes induced by different dynamic disturbances under true triaxial compression was developed.The system is mainly composed of a static loading subsystem,a dynamic loading subsystem,a specimen box subsystem,and a data measurement subsystem.The static loading subsystem uses low stiffness loss frame structure technology,which greatly improves the frame stiffness in the three principal stress directions(up to 20 GN/m)and ensures the demand of the disturbance experiment in both the prepeak and postpeak stages.The disturbance loads with frequency of 0e20 Hz and stress level of 0e30 MPa were applied using large flow parallel oil source technology characterized with high heat dissipation efficiency.For the disturbance loads with frequency of 100e500 Hz and stress level of 0e30 MPa,they were realized by using high-frequency and centimeter-per-second-scale low-speed disturbance rod technology.Three rigid self-stabilizing specimen boxes were utilized to provide support for the specimen and deformation sensors,ensuring the stability and accuracy of the data obtained.To verify the performance of the true triaxial test system,disturbance experiments were conducted on granite specimens.The results show that the experimental device satisfies the requirements of original design,with an excellent repeatability and reliable testing results. 展开更多
关键词 Low-frequency and low-amplitude full surface disturbance True triaxial system Prepeak and postpeak dynamic disturbance Rockburst-induced stress wave Blasting-induced stress wave Hard rock
下载PDF
Experimental study on failure evolution mechanism of clastic rock considering cementation and intermediate principal stress 被引量:3
7
作者 Feiyan Wang xia-ting feng +1 位作者 Yangyi Zhou Xiaojun Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1636-1650,共15页
The study of clastic rock failure evolution under true triaxial stress is an important research topic;however,it is rarely studied systematically due to the limitation of monitoring technology.In this study,true triax... The study of clastic rock failure evolution under true triaxial stress is an important research topic;however,it is rarely studied systematically due to the limitation of monitoring technology.In this study,true triaxial compression tests were conducted on clastic rock specimens to investigate the effect of cementation and intermediate principal stress(s2)on the failure mechanism.The complete stressestrain curves were obtained,while the acoustic emission(AE)was monitored to indirectly evaluate the evo-lution of tensile and shear cracks,and crack evolution under true triaxial compression was imaged in real time by a high-speed camera.The results showed that the deformation and failure characteristics of clastic rock were closely related to the cementation type and intermediate principal stress.On the basis of the distribution characteristics of the ratio of rise time to amplitude(RA)and the average frequency(AF)of AE signals,tensile cracks of the contact cementation specimen propagated preferentially.Meanwhile,the enhancement of specimen cementation promoted the evolution of shear cracks,and the increase inσ_(2)promoted the evolution of tensile cracks.Moreover,the mesoscale cracking mechanism of clastic rock caused by cementation andσ_(2)under true triaxial compression was analyzed.The failure patterns of clastic rock under true triaxial compression were divided into three modes:structure-induced,structure-stress-induced and stress-induced failures.This study confirms the feasibility of high-speed camera technology in true triaxial testing,and has important implications for elucidating the disaster mechanism of deep tunnels in weak rocks. 展开更多
关键词 True triaxial compression CEMENTATION Failure evolution Acoustic emission(AE) High-speed camera
下载PDF
An open-end high-power microwave-induced fracturing system for hard rock 被引量:2
8
作者 xia-ting feng Jiuyu Zhang +4 位作者 feng Lin Chengxiang Yang Shiping Li Tianyang Tong Xiangxin Su 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3163-3172,共10页
Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-powe... Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-power microwave subsystem (100 kW), a true triaxial testing machine, a dynamic monitoring subsystem, and an electromagnetic shielding subsystem. It can realize rapid microwave-induced fracturing, intelligent tuning of impedance, dynamic feedback under strong microwave fields, and active control of microwave parameters by addressing the following issues: the instability and insecurity of the system, the discharge breakdown between coaxial lines during high-power microwave output, and a lack of feedback of rock-microwave response. In this study, microwave-induced surface and borehole fracturing tests under true triaxial stress were carried out. Experimental comparisons imply that high-power microwave irradiation can reduce the fracturing time of hard rock and that the fracture range (160 mm) of a 915-MHz microwave source is about three times that of 2.45 GHz. After microwave-induced borehole fracturing, many tensile cracks occur on the rock surface and in the borehole: the maximum reduction of the P-wave velocity is 12.8%. The test results show that a high-power microwave source of 915 MHz is more conducive to assisting mechanical rock breaking and destressing. The system can promote the development of microwave-assisted rock breaking equipment. 展开更多
关键词 Hard rock engineering High-power microwave Microwave intelligent fracturing Dynamic feedback True triaxial stress
下载PDF
A rigid true triaxial apparatus for analyses of deformation and failure features of deep weak rock under excavation stress paths
9
作者 xia-ting feng Xiaojun Yu +2 位作者 Yangyi Zhou Chengxiang Yang Feiyan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1065-1075,共11页
The squeezing scenario in deep weak rock tunnels can hinder underground construction.However,due to the limitations of test technologies at hand,the real excavation stress path cannot be mimicked in the laboratory.Thu... The squeezing scenario in deep weak rock tunnels can hinder underground construction.However,due to the limitations of test technologies at hand,the real excavation stress path cannot be mimicked in the laboratory.Thus,the large deformation mechanism of deep weak rocks still remains unclear.For this,a true triaxial apparatus(TTA)to investigate the mechanical responses of deep weak rock under excavation stress paths in field and reveal the squeezing mechanism of deep tunnels is assembled and developed at Northeastern University,China.The apparatus can perform instantaneous unloading in s3 direction based on electromagnetism technology.In addition,uniform loading and deformation measurements can be carried out based on the proposed linked interlocking clamp and antifriction device,even if the sample has a strong dilatation deformation performance.Next,a bore trepanning is designed to capture noiseless acoustic emission(AE)signals for deep weak rock at a low threshold.Finally,two tests were are conducted using this instrument to preliminarily understand the failure and deformation features of deep weak rock based on fractured marble.The results show that the complete stressestrain curves of fractured marble have the characteristics of low strengths and large deformations,and the larger deformation and the more serious failure occur when the fractured marble enters the post-peak state after excavation.The results show that the developed apparatus is likely to be applicable for deep weak rock engineering. 展开更多
关键词 True triaxial apparatus(TTA) Deep weak rock Large deformation Excavation stress path Instantaneous unloading
下载PDF
Excavation-induced deep hard rock fracturing:Methodology and applications 被引量:13
10
作者 xia-ting feng Cheng-Xiang Yang +4 位作者 Rui Kong Jun Zhao Yangyi Zhou Zhibin Yao Lei Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期1-34,共34页
To analyze and predict the mechanical behaviors of deep hard rocks,some key issues concerning rock fracturing mechanics for deep hard rock excavations are discussed.First,a series of apparatuses and methods have been ... To analyze and predict the mechanical behaviors of deep hard rocks,some key issues concerning rock fracturing mechanics for deep hard rock excavations are discussed.First,a series of apparatuses and methods have been developed to test the mechanical properties and fracturing behaviors of hard rocks under high true triaxial stress paths.Evolution mechanisms of stress-induced disasters in deep hard rock excavations,such as spalling,deep cracking,massive roof collapse,large deformation and rockbursts,have been recognized.The analytical theory for the fracturing process of hard rock masses,including the three-dimensional failure criterion,stress-induced mechanical model,fracturing degree index,energy release index and numerical method,has been established.The cracking-restraint method is developed for mitigating or controlling rock spalling,deep cracking and massive collapse of deep hard rocks.An energy-controlled method is also proposed for the prevention of rockbursts.Finally,two typical cases are used to illustrate the application of the proposed methodology in the Baihetan caverns and Bayu tunnels of China. 展开更多
关键词 SPALLING Deep cracking Large deformation Rockbursts Excavation-induced deep hard rock fracturing Cracking-restraint method Energy-controlled method
下载PDF
A novel true triaxial test system for microwave-induced fracturing of hard rocks 被引量:14
11
作者 xia-ting feng Jiuyu Zhang +4 位作者 Chengxiang Yang Jun Tian feng Lin Shiping Li Xiangxin Su 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期961-971,共11页
This study introduces a test system for microwave-induced fracturing of hard rocks under true triaxial stress.The test system comprises a true triaxial stress loading system,an open-ended microwaveinduced fracturing s... This study introduces a test system for microwave-induced fracturing of hard rocks under true triaxial stress.The test system comprises a true triaxial stress loading system,an open-ended microwaveinduced fracturing system,a data acquisition system,an acoustic emission(AE)monitoring system,and an auxiliary specimen loading system.Microwave-induced surface and borehole fracturing tests under true triaxial stress were fulfilled for the first time,which overcomes the problem of microwave leakage in the coupling loading of true triaxial stress and microwave.By developing the dynamic monitoring system,the thermal response and fracture evolution were obtained during microwave irradiation.The monitoring system includes the infrared thermometry technique for monitoring rock surface temperature,the distributed optic fiber sensing technique for monitoring temperature in borehole in rock,the AE technique and two-dimensional digital speckle correlation technique for monitoring the evolution of thermal damage and the rock fracturing process.To validate the advantages of the test system and investigate the characteristics of microwave-induced fracturing of hard rocks,the study demonstrates the experimental methods and results for microwave-induced surface and borehole fracturing under true triaxial stress.The results show that thermal cracking presented intermittent characteristics(calm eactiveecalm)during microwave-induced surface and borehole fracturing of basalt.In addition,true triaxial stress can inhibit the development and distribution of thermal cracks during microwave-induced surface fracturing.When microwave-induced borehole fracturing occurs,it promotes the distribution of thermal cracks in rock,but inhibits the width of cracks.The results also prove the reliability of the test system. 展开更多
关键词 Deep hard rock engineering True triaxial apparatus Microwave-induced fracturing of hard rocks Electromagnetic compatibility Dynamic monitoring Evolution of rock fracturing
下载PDF
Rock mechanics contributions to recent hydroelectric developments in China 被引量:9
12
作者 xia-ting feng Yang-Yi Zhou Quan Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第3期511-526,共16页
Rock mechanics plays a critical role in the design and construction of hydroelectric projects including large caverns under high in situ stress,deep tunnels with overburden more than 2500 m,and excavated rock slopes o... Rock mechanics plays a critical role in the design and construction of hydroelectric projects including large caverns under high in situ stress,deep tunnels with overburden more than 2500 m,and excavated rock slopes of 700 m in height.For this,this paper conducts a review on the rock mechanics contributions to recent hydroelectric developments in China.It includes the development of new testing facilities,mechanical models,recognition methods for mechanical parameters of rock masses,design flowchart and modeling approaches,cracking-restraint method,governing flowchart of rock engineering risk factors enabling the development of risk-reduced design and risk-reduced construction,and initial and dynamic design methods.As an example,the optimal design of underground powerhouses at the Baihetan hydroelectric plant,China,is given.This includes determination of in situ stresses,prediction of deformation and failure depth of surrounding rock masses,development of the optimal excavation scheme and support design.In situ monitoring results of the displacements and excavation damaged zones(EDZs)have verified the rationality of the design methodology. 展开更多
关键词 Headrace TUNNELS CAVERN groups Dam foundation Rock SPALLING ROCKBURST Deep cracking
下载PDF
Ground behaviour analysis,support system design and construction strategies in deep hard rock mining-Justified in Western Australian’s mines 被引量:5
13
作者 Behrooz Rahimi Mostafa Sharifzadeh xia-ting feng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第1期1-20,共20页
Development of deep underground mining projects is crucial for optimum extraction of mineral deposits.The main challenges at great depth are high rock stress levels,seismic events,large-scale deformation,sudden failur... Development of deep underground mining projects is crucial for optimum extraction of mineral deposits.The main challenges at great depth are high rock stress levels,seismic events,large-scale deformation,sudden failures and high temperatures that may cause abrupt and unpredictable instability and collapse over a large scale.In this paper,a ground control and management strategy was presented corresponding to the three stages of projects:strategic design,tactical design and operational design.Strategic design is results in preparing a broad plan and primary design for mining excavations.The tactical design is to provide detail design such as stabilisation methods.Operational design stage is related to monitoring and updating design parameters.The most effective ground control strategies in this stage are maintenance,rehabilitation,monitoring and contingency plan.Additionally,a new procedure for design of ground support systems for deep and hard rock was proposed.The main principles are:static and/or dynamic loading types,determination of loading sources,characterisation of geological conditions and the effects of orientation of major structures with openings,estimation of ground loading factor,identification of potential primary and secondary failures,utilisation of appropriate design analysis methods,estimation of depth failure,calculation of the static and/or dynamic demand ground support capacity,and selection of surface and reinforcement elements.Gravitational force is the dominant loading force in low-level stresses.In high stress level failure mechanism becomes more complex in rock mass structures.In this condition,a variety of factors such as release of stored energy due to seismic events,stress concentration,and major structures influence on ground behaviour and judgement are very complicated.The key rock engineering schemes to minimise the risk of failures in high-stress levels at great depth involve depressurisation and quality control of materials.Microseismic and blast monitoring throughout the mining operations are required to control sudden failures.Proper excavation sequences in underground stopes based on top-down,bottom-up,centre-out and abutment-centre were discussed.Also,the performance of a ground support system was examined by field observation monitoring systems for controlling and modifying ground support elements.The important outcome of the research is that the proposed procedure of selecting ground support systems for static and dynamic situations was applied in several deep underground mines in Western Australia.Ground behaviour modes and failure mechanism were identified and assessed.Ground demand for static and dynamic conditions was estimated and an appropriate ground support system was selected and evaluated in site-specific conditions according to proposed method for ground support design at great depth.The stability of rock masses was confirmed,and the reliability of the design methodology for great depth and hard rock conditions was also justified. 展开更多
关键词 GROUND MANAGEMENT Support system design Sequential EXCAVATION Stress MANAGEMENT GEOTECHNICAL monitoring DEEP UNDERGROUND mines
下载PDF
Experimental investigation on fracturing process of marble under biaxial compression 被引量:3
14
作者 Zhaofeng Wang xia-ting feng +4 位作者 Chengxiang Yang Yangyi Zhou Hong Xu Qiang Han Yaohui Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第5期943-959,共17页
In this study,servo-controlled biaxial compression tests were conducted on marble specimens to investigate their failure characteristics and fracturing process.The complete stressestrain curves were obtained,and the t... In this study,servo-controlled biaxial compression tests were conducted on marble specimens to investigate their failure characteristics and fracturing process.The complete stressestrain curves were obtained,and the three-dimensional(3D)features of the failure surfaces were acquired by 3D laser scanning.Acoustic emission(AE)monitoring and moment tensor(MT)analysis were used in combination to better understand the fracturing mechanism of marble under biaxial compression.It was noted that a type of 3D stepwise cracking behaviour occurred on the fracturing surfaces of the examined specimens.The stress dropped multiple times,and a repeated fracturing mode corresponding to the repeated stress drops in the post-peak regime was observed.Three substages,i.e.stress stabilisation,stress decrease and stress increase,were identified for a single fracturing mode.Then quantitative and statistical analyses of the fracturing process at each substage were discussed.Based on the testing results,it was found that at the stress stabilisation substage,the proportion of mixed-mode fractures increased.At the stress decrease substage,the proportion of mixed-mode fractures decreased,and the tensile or shear fractures increased.At the stress increase substage,the proportion of mixed-mode or tensile fractures decreased,and the shear fractures increased.Finally,a conceptual model for the stepwise crack formation was proposed. 展开更多
关键词 Fracturing mechanism Biaxial compression Acoustic emission(AE) Moment tensor(MT) Hard rock Stepwise crack
下载PDF
A continuous-discontinuous cellular automaton method for cracks growth and coalescence in brittle material 被引量:3
15
作者 Fei Yan xia-ting feng +1 位作者 Peng-Zhi Pan Shao-Jun Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第1期73-83,共11页
A method of continuous-discontinuous cellular automaton for modeling the growth and coalescence of multiple cracks in brittle material is presented. The method uses the level set to track arbitrary discontinuities, an... A method of continuous-discontinuous cellular automaton for modeling the growth and coalescence of multiple cracks in brittle material is presented. The method uses the level set to track arbitrary discontinuities, and calculation grids are independent of the discontinuities and no remeshing are required with the crack growing. Based on Grif- fith fracture theory and Mohr-Coulumb criterion, a mixed fracture criterion for multiple cracks growth in brittle mate- rial is proposed. The method treats the junction and coales- cence of multiple cracks, and junction criterion and coales- cence criterion for brittle material are given, too. Besides, in order to overcome the tracking error in the level set ap- proximation for crack junction and coalescence, a dichotomy searching algorithm is proposed. Introduced the above the- ories into continuous-discontinuous cellular automaton, the present method can be applied to solving multiple crack growth in brittle material, and only cell stiffness is needed and no assembled global stiffness is needed. Some numerical examples are given to shown that the present method is efficient and accurate for crack junction, coalescence and percolation problems. 展开更多
关键词 Continuous-discontinuous cellular automatonmethod Multiple crack growth Discontinuous cellular au-tomaton Junction criterion - Coalescence criterion
下载PDF
Monitoring, Warning, and Control of Rockburst in Deep Metal Mines 被引量:36
16
作者 xia-ting feng Jianpo Liu +3 位作者 Bingrui Chen Yaxun Xiao Guangliang feng fengpeng Zhang 《Engineering》 SCIE EI 2017年第4期538-545,共8页
This paper reviews the recent achievements made by our team in the mitigation of rockburst risk. It includes the development of neural network modeling on rockburst risk assessment for deep gold mines in South Af- ric... This paper reviews the recent achievements made by our team in the mitigation of rockburst risk. It includes the development of neural network modeling on rockburst risk assessment for deep gold mines in South Af- rica, an intelligent microseismicity monitoring system and sensors, an understanding of the rockburst evolution process using laboratory and in situ tests and monitoring, the establishment of a quantitative warning method for the location and intensities of different types of rockburst, and the development of measures for the dynamic control of rockburst. The mitigation of rockburst at the Hongtoushan copper mine is presented as an illustrative example. 展开更多
关键词 Deep metal mining Rockburst Monitoring Warning Mitigation
下载PDF
Rock Engineering Risk 被引量:3
17
作者 John A.Hudson xia-ting feng E.T.Brown 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第4期479-480,共2页
The invaluable book reports the outcome of the work of the Commission on Design Methodology of the International Society for Rock Mechanics (ISRM) in the ISRM's 2011-2015 term of office during which Professor John ... The invaluable book reports the outcome of the work of the Commission on Design Methodology of the International Society for Rock Mechanics (ISRM) in the ISRM's 2011-2015 term of office during which Professor John Hudson acted as Commission Presi- dent while Professor Xia-Ting Feng served as ISRM President. It pro- vides a sequel to the authors' previous book, Rock Engineering Design (Feng and Hudson, 2011), which reported the work of the Commission in the ISRM's 2007-2011 term of office when Profes- sor Feng acted as Commission President and Professor Hudson served as ISRM President. It is also the first volume in the newly established ISRM Book Series published by CRC Press/Balkema of the Taylor & Francis Group, an initiative taken during Professor Feng's recent term of office as ISRM President. 展开更多
关键词 ROCK Rock Engineering Risk
下载PDF
Microwave response characteristics and influencing factors of ores based on dielectric properties of synthetic samples 被引量:1
18
作者 feng Lin xia-ting feng +4 位作者 Chengxiang Yang Shiping Li Jiuyu Zhang Xiangxin Su Tianyang Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期315-328,共14页
In order to understand the influence of different factors on the microwave response characteristics of ores,the effects of electrical conductivity,metal mineral content,compactness,metal mineral distribution,microwave... In order to understand the influence of different factors on the microwave response characteristics of ores,the effects of electrical conductivity,metal mineral content,compactness,metal mineral distribution,microwave frequency and temperature on the dielectric properties of synthetic ores(metal mineral and quartz)were studied.Microwave heating tests were carried out on three types of natural ores(Hongtoushan copper ore,Sishanling iron ore and Dandong gold ore)with significant differences in metal mineral contents.The test results showed that under microwave irradiation,the stronger the electrical conductivity of the metal minerals,the smaller the penetration depth in synthetic ore.For those metal minerals with lower electrical conductivity,the microwave absorption coefficient of the synthetic samples increases with increasing metal mineral content.For those metal minerals with higher electrical conductivity,the microwave absorption coefficient of the samples first increases and then decreases as the metal mineral content increases.When the metal minerals are distributed in layers,the penetration depth is much less than that given a uniform distribution.The penetration depth in the sample at microwave frequency of 915 MHz is greater than that at 2.45 GHz.The higher the electrical conductivity of metal minerals used in synthetic ores,the higher the high-temperature sensitivity of electromagnetic shielding coefficient(0.C-500.C).The Hongtoushan copper ore with high metal mineral content exhibits obvious size effect.The effects of ore structure and crystal particle size on the distribution characteristics of microcracks were discussed.Based on the test results,a quantitative prediction model of microwave sensitivity of ore was proposed,which provides guidance for the prediction of ore heating effect and the selection of microwave heating sequence of ore. 展开更多
关键词 Metal minerals Electrical conductivity Metal mineral content Synthetic ore Prediction model
下载PDF
Effect of lateral stress on frictional properties of a fracture in sandstone
19
作者 Zhechao Wang Jinmeng Zhao +2 位作者 Derek Elsworth xia-ting feng Pengyu Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2024年第11期4416-4427,共12页
The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential ... The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential for their reactivation and subsequent earthquake triggering.Most measurements of the frictional properties of rock fractures have been conducted under normal and shear stresses.However,faults in gas storage facilities exist within a true three-dimensional(3D)stress state.A double-direct shear experiment on rock fractures under both lateral and normal stresses was conducted using a true triaxial loading system.It was observed that the friction coefficient increases with increasing lateral stress,but decreases with increasing normal stress.The impact of lateral and normal stresses on the response is primarily mediated through their influence on the initial friction coefficient.This allows for an empirical modification of the rate-state friction model that considers the influence of lateral and normal stresses.The impact of lateral and normal stresses on observed friction coefficients is related to the propensity for the production of wear products on the fracture surfaces.Lateral stresses enhance the shear strength of rock(e.g.Mogi criterion).This reduces asperity breakage and the generation of wear products,and consequently augments the friction coefficient of the surface.Conversely,increased normal stresses inhibit dilatancy on the fracture surface,increasing the breakage of asperities and the concomitant production of wear products that promote rolling deformation.This ultimately reduces the friction coefficient. 展开更多
关键词 Sandstone fracture Friction coefficient Lateral stress Normal stress Shear rate Rate-state friction model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部