This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-dra...This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-drainage,and scanning electron microscopy(SEM)tests,the effects of prehydrolysis duration(T),urease activity(UA)and curing age(CA)on the mechanical properties and microstructural characteristics of bio-carbonized samples were systematically investigated and analyzed.The results demonstrated that the proposed method could significantly enhance urea hydrolysis and RMC bio-carbonation to achieve efficient stabilization of dredged sludge with 80%high water content.A significant strength increment of up to about 1063.36 kPa was obtained for the bio-carbonized samples after just 7 d of curing,which was 2.64 times higher than that of the 28-day cured ordinary Portland cement-reinforced samples.Both elevated T and UA could notably increase urea utilization ratio and carbonate ion yield,but the resulting surge in supersaturation also affected the precipitation patterns of hydrated magnesia carbonates(HMCs),which weakened the cementation effect of HMCs on soil particles and further inhibited strength enhancement of bio-carbonized samples.The optimum formula was determined to be the case of T?24 h and UA?10 U/mL for dredged sludge stabilization.A 7-day CA was enough for bio-carbonized samples to obtain stable strength,albeit slightly affected by UA.The benefits of high efficiency and water stability presented the potential of this method in achieving dredged sludge stabilization and resource utilization.This investigation provides informative ideas and valuable insights on implementing advanced bio-geotechnical techniques to achieve efficient stabilization of soft soil,such as dredged sludge.展开更多
This paper reports a classical molecular dynamics study of the potential of mean forces(PMFs),association constants,microstructures K^+-Cl^- ion pair in supercritical fluids.The constrained MD method is used to derive...This paper reports a classical molecular dynamics study of the potential of mean forces(PMFs),association constants,microstructures K^+-Cl^- ion pair in supercritical fluids.The constrained MD method is used to derive the PMFs of K^+-Cl^- ion pair from 673 to 1273 K in low-density water(0.10-0.60 g/cm).The PMF results show that the contact ion-pair(CIP) state is the one most energetically favored for a K^+-Cl^- ion pair.The association constants of the K^+-Cl^- ion pair are calculated from the PMFs,indicating that the K^+-Cl^- ion pair is thermodynamically stable.It gets more stable as T increases or water density decreases.The microstructures of the K^+-Cl^- ion pair in the CIP and solvent-shared ion-pair states are characterized in detail.Moreover,we explore the structures and stabilities of the KCl-Au(I)/Cu(I) complexes by using quantum mechanical calculations.The results reveal that these complexes can remain stable for T up to1273 K,which indicates that KCl may act as a ligand complexing ore-forming metals in hydrothermal fluids.展开更多
Magmatic-hydrothermal processes play an important role in the transport, enrichment, and mineralization of cesium. In this study, classical molecular dynamics simulations were performed to investigate the properties o...Magmatic-hydrothermal processes play an important role in the transport, enrichment, and mineralization of cesium. In this study, classical molecular dynamics simulations were performed to investigate the properties of Cs-Cl and Cs-F ion pairs in hydrothermal fluids. The association constants(log_(10)K_(A)(m)) under a wide range of temperature(i.e. 298–1273 K) and fluid density(i.e. 0.1–1.0 g/cm^(3)) were derived from the potential of mean force(PMF) curves. The results indicate that CsCl and Cs-F ion pairs have similar stabilities. This is different from other alkali metal cations(e.g., Li^(+), Na^(+), and K^(+)), which prefer binding with F over Cl. The stabilities of Cs-Cl and Cs-F ion pairs increase with increasing temperature(except for the fluid density ≤ 0.1 g/cm^(3)) or decreasing fluid density, which is similar to other alkali halide ion pairs. Comparisons among the stabilities of CsCl/F and other alkali halide ion pairs indicate that the Li–F ion pair has the highest stability in hydrothermal fluids.展开更多
We use molecular dynamics simulation to study the mechanisms involved in the adsorption of aqueous uranyl species(UO_2^(2+)) to the basal surfaces of clay minerals,including kaolinite,pyrophyllite and montmorillonite....We use molecular dynamics simulation to study the mechanisms involved in the adsorption of aqueous uranyl species(UO_2^(2+)) to the basal surfaces of clay minerals,including kaolinite,pyrophyllite and montmorillonite.Uranyl ion can form various complexes with carbonates,namely,[UO_2(H_2O)_5]^(2+),[UO_2(H_2O)3(CO_3)],[UO_2(H_2O)2(CO_3)_2]^(2-),[UO_2(CO_3)_3]^(4-).The simulations show that at aqueous clay interfaces,both uranyl species and surface type control the adsorption pattern.The noncarbonato and monocarbonato uranyl species can form outer-sphere complexes on siloxane surfaces through electrostatic interaction,but the dicarbonato and tricarbonato uranyl complexes rarely adsorb on the siloxane surfaces.Strong outer-sphere adsorptions of the uranylcarbonate complexes on gibbsite surfaces are observed,which are fixed by hydrogen bonds between the ligands(carbonate and/or H_2O) and surface hydroxyls.The sorption behaviors derived in this study provide new insights into understanding the migration and enrichment of uranium and other radionuclides.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41925012 and 42230710)the Key Laboratory Cooperation Special Project of Western Cross Team of Western Light,CAS(Grant No.xbzg-zdsys-202107).
文摘This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-drainage,and scanning electron microscopy(SEM)tests,the effects of prehydrolysis duration(T),urease activity(UA)and curing age(CA)on the mechanical properties and microstructural characteristics of bio-carbonized samples were systematically investigated and analyzed.The results demonstrated that the proposed method could significantly enhance urea hydrolysis and RMC bio-carbonation to achieve efficient stabilization of dredged sludge with 80%high water content.A significant strength increment of up to about 1063.36 kPa was obtained for the bio-carbonized samples after just 7 d of curing,which was 2.64 times higher than that of the 28-day cured ordinary Portland cement-reinforced samples.Both elevated T and UA could notably increase urea utilization ratio and carbonate ion yield,but the resulting surge in supersaturation also affected the precipitation patterns of hydrated magnesia carbonates(HMCs),which weakened the cementation effect of HMCs on soil particles and further inhibited strength enhancement of bio-carbonized samples.The optimum formula was determined to be the case of T?24 h and UA?10 U/mL for dredged sludge stabilization.A 7-day CA was enough for bio-carbonized samples to obtain stable strength,albeit slightly affected by UA.The benefits of high efficiency and water stability presented the potential of this method in achieving dredged sludge stabilization and resource utilization.This investigation provides informative ideas and valuable insights on implementing advanced bio-geotechnical techniques to achieve efficient stabilization of soft soil,such as dredged sludge.
基金National Science Foundation of China(Nos.41222015,41273074,41425009,and 41572027)Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of P.R.China (No.201228)Newton International Fellowship Program and the financial support from the State Key Laboratory at Nanjing University
文摘This paper reports a classical molecular dynamics study of the potential of mean forces(PMFs),association constants,microstructures K^+-Cl^- ion pair in supercritical fluids.The constrained MD method is used to derive the PMFs of K^+-Cl^- ion pair from 673 to 1273 K in low-density water(0.10-0.60 g/cm).The PMF results show that the contact ion-pair(CIP) state is the one most energetically favored for a K^+-Cl^- ion pair.The association constants of the K^+-Cl^- ion pair are calculated from the PMFs,indicating that the K^+-Cl^- ion pair is thermodynamically stable.It gets more stable as T increases or water density decreases.The microstructures of the K^+-Cl^- ion pair in the CIP and solvent-shared ion-pair states are characterized in detail.Moreover,we explore the structures and stabilities of the KCl-Au(I)/Cu(I) complexes by using quantum mechanical calculations.The results reveal that these complexes can remain stable for T up to1273 K,which indicates that KCl may act as a ligand complexing ore-forming metals in hydrothermal fluids.
基金supported by the National Natural Science Foundation of China (Nos 92062213,91855209,42125202 and 41872041)the financial support from the State Key Laboratory for Mineral Deposits Research at Nanjing University。
文摘Magmatic-hydrothermal processes play an important role in the transport, enrichment, and mineralization of cesium. In this study, classical molecular dynamics simulations were performed to investigate the properties of Cs-Cl and Cs-F ion pairs in hydrothermal fluids. The association constants(log_(10)K_(A)(m)) under a wide range of temperature(i.e. 298–1273 K) and fluid density(i.e. 0.1–1.0 g/cm^(3)) were derived from the potential of mean force(PMF) curves. The results indicate that CsCl and Cs-F ion pairs have similar stabilities. This is different from other alkali metal cations(e.g., Li^(+), Na^(+), and K^(+)), which prefer binding with F over Cl. The stabilities of Cs-Cl and Cs-F ion pairs increase with increasing temperature(except for the fluid density ≤ 0.1 g/cm^(3)) or decreasing fluid density, which is similar to other alkali halide ion pairs. Comparisons among the stabilities of CsCl/F and other alkali halide ion pairs indicate that the Li–F ion pair has the highest stability in hydrothermal fluids.
基金National Science Foundation of China(Nos.41002013,40973029,41273074 and 41222015)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.201228)+1 种基金Newton International Fellowship Programthe financial support from the State Key Laboratory for Mineral Deposits Research
文摘We use molecular dynamics simulation to study the mechanisms involved in the adsorption of aqueous uranyl species(UO_2^(2+)) to the basal surfaces of clay minerals,including kaolinite,pyrophyllite and montmorillonite.Uranyl ion can form various complexes with carbonates,namely,[UO_2(H_2O)_5]^(2+),[UO_2(H_2O)3(CO_3)],[UO_2(H_2O)2(CO_3)_2]^(2-),[UO_2(CO_3)_3]^(4-).The simulations show that at aqueous clay interfaces,both uranyl species and surface type control the adsorption pattern.The noncarbonato and monocarbonato uranyl species can form outer-sphere complexes on siloxane surfaces through electrostatic interaction,but the dicarbonato and tricarbonato uranyl complexes rarely adsorb on the siloxane surfaces.Strong outer-sphere adsorptions of the uranylcarbonate complexes on gibbsite surfaces are observed,which are fixed by hydrogen bonds between the ligands(carbonate and/or H_2O) and surface hydroxyls.The sorption behaviors derived in this study provide new insights into understanding the migration and enrichment of uranium and other radionuclides.