Glioblastoma(GBM)is a highly vascularized malignant brain tumor with poor clinical outcomes.Vasculogenic mimicry(VM)formed by aggressive GBM cells is an alternative approach for tumor blood supply and contributes to t...Glioblastoma(GBM)is a highly vascularized malignant brain tumor with poor clinical outcomes.Vasculogenic mimicry(VM)formed by aggressive GBM cells is an alternative approach for tumor blood supply and contributes to the failure of anti-angiogenic therapy.To date,there is still a lack of effective drugs that target VM formation in GBM.In the present study,we evaluated the effects of the plant cyclopeptide moroidin on VM formed by GBM cells and investigated its underlying molecular mechanisms.Moroidin significantly suppressed cell migration,tube formation,and the expression levels ofα-smooth muscle actin and matrix metalloproteinase-9 in human GBM cell lines at sublethal concentrations.The RNA sequencing data suggested the involvement of the epithelialmesenchymal transition(EMT)pathway in the mechanism of moroidin.Exposure to moroidin led to a concentration-dependent decrease in the expression levels of the EMT markers N-cadherin and vimentin in GBM cells.Moreover,moroidin significantly reduced the level of phosphorylated extracellular signal-regulated protein kinase(p-ERK)and inhibited the activation of β-catenin.Finally,we demonstrated that the plant cyclopeptide moroidin inhibited VM formation by GBM cells through inhibiting the ERK/β-catenin-mediated EMT.Therefore,our study indicates a potential application of moroidin as an anti-VM agent in the treatment of GBM.展开更多
Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucia...Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucial mitochondrial protein,has been reported to cause Parkinson's disease.FIFO-ATPase participates in the synthesis of cellular adenosine triphosphate(ATP)and plays a central role in mitochondrial energy metabolism.However,the specific roles of wild-type(WT)CHCHD2 and T611-mutant CHCHD2 in regulating F1FO-ATPase activity in Parkinson's disease,as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1FO-ATPase activity,remain unclea r.Therefore,in this study,we expressed WT CHCHD2 and T61l-mutant CHCHD2 in an MPP^(+)-induced SH-SY5Y cell model of PD.We found that CHCHD2 protected mitochondria from developing MPP^(+)-induced dysfunction.Under normal conditions,ove rexpression of WT CHCHD2 promoted F1FO-ATPase assembly,while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1FO-ATPase assembly.In addition,mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1FO-ATPase.Three weeks after transfection with AAV-CHCHD2 T61I,we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model.These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function.展开更多
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano...Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.展开更多
Dear Editor,Ferroptosis,an iron-dependent form of cell death driven by overwhelming lipid peroxidation,represents a vulnerability in cancers,and therapeutic strategies to further potentiate ferroptosis hold great pote...Dear Editor,Ferroptosis,an iron-dependent form of cell death driven by overwhelming lipid peroxidation,represents a vulnerability in cancers,and therapeutic strategies to further potentiate ferroptosis hold great potential for melanoma treatment.展开更多
In recent years,a new class of metallic materials featuring heterogeneous structures has emerged.These materials consist of distinct soft and hard domains with significant differences in mechanical properties,allowing...In recent years,a new class of metallic materials featuring heterogeneous structures has emerged.These materials consist of distinct soft and hard domains with significant differences in mechanical properties,allowing them to maintain high strength while offering superior ductility.Magnesium(Mg)alloys,renowned for their low density,high specific strength,exceptional vibration damping,and electromagnetic shielding properties,exhibit tremendous potential as lightweight and functional materials.Despite their advantageous properties,high-strength Mg alloys often suffer from limited ductility.However,the emergence of heterogeneous materials provides a fresh perspective for the development of Mg alloys with both high strength and ductility.This article provided a fundamental overview of heterostructured materials and systematically reviewed the recent research progress in the design of Mg alloys with strength-ductility balance based on heterostructure principles.The review encompassed various aspects,including preparation methods,formation mechanisms of diverse heterostructures,and mechanical properties,both within domestic and international contexts.On this basis,the article discussed the challenges encountered in the design and fabrication of heterostructured Mg alloys,as well as the urgent issues that require attention and resolution in the future.展开更多
Two-dimensional transition metal carbides(MXenes) have been demonstrated to be promising supports for single-atom catalysts(SACs) to enable efficient oxygen evolution reaction(OER).However,the rational design of MXene...Two-dimensional transition metal carbides(MXenes) have been demonstrated to be promising supports for single-atom catalysts(SACs) to enable efficient oxygen evolution reaction(OER).However,the rational design of MXene-based SACs depends on an experimental trial-and-error approach.A theoretical guidance principle is highly expected for the efficient evaluation of MXene-based SACs.Herein,highthroughput screening was performed through first-principles calculations and machine learning techniques.Ti_(3)C_(2)(OH)_(x),V_(3)C_(2)(OH)_(x),Zr_(3)C_(2)(OH)_(x),Nb_(3)C_(2)(OH)_(x),Hf_(3)C_(2)(OH)_(x),Ta_(3)C_(2)(OH)_(x),and W_(3)C_(2)(OH)_(x) were screened out based on their excellent stability.Zn,Pd,Ag,Cd,Au,and Hg were proposed to be promising single atoms anchored in MXenes based on cohesive energy analysis.Hf_(3)C_(2)(OH)_(x) with a Pd single atom delivers a theoretical overpotential of 81 mV.Both moderate electron-deficient state and high covalency of metal-carbon bonds were critical features for the high OER reactivity.This principle is expected to be a promising approach to the rational design of OER catalysts for metal-air batteries,fuel cells,and other OER-based energy storage devices.展开更多
Background The aim of this experiment was to investigate the effect of different levels of betaine(Bet)inclusion in the diet on the intestinal health of growing rabbits under summer heat.A total of 100 weaned Qixing m...Background The aim of this experiment was to investigate the effect of different levels of betaine(Bet)inclusion in the diet on the intestinal health of growing rabbits under summer heat.A total of 100 weaned Qixing meat rabbits aged 35 d with body weight of 748.61±38.59 g were randomly divided into 5 treatment groups:control group(basal diet)and Bet groups(basal diet+0.75,1.0,1.5 or 2.0 g/kg Bet).The average daily temperature in the rabbitry during the experiment was 30.48°C and the relative humidity was 69.44%.Results Dietary addition of Bet had no significant effect on growth performance and health status of growing rabbits(P>0.05),but it increased ileal secretory immunoglobulin A content compared to the control under summer heat(P<0.05).Addition of 0.75 g/kg Bet up-regulated jejunal IL-4,down-regulated ileal TNF-αexpression(P<0.05).The addition of 1.0 g/kg Bet increased the villi height(VH)in the jejunum(P<0.05).Serum glucose levels were reduced,and the expression of SLC6A20 was up-regulated in jejunum and ileum of rabbits fed with 1.5 g/kg Bet(P<0.05).When added at 2.0 g/kg,Bet reduced serum HSP70 content,increased jejunal VH,and up-regulated duodenal SLC7A6,SLC38A2,mTOR and 4EBP-2 expression(P<0.05).Correlation analysis revealed that intestinal mTOR expression was significantly and positively correlated with SLC7A6,SLC38A2,SLC36A1 and IL-4 expression(P<0.05).Conclusions Dietary addition of Bet can up-regulate the expression of anti-inflammatory factors through the AAT/mTOR pathway,improve the intestinal immune function,alleviate intestinal damage in growing rabbits caused by summer heat,and improve intestinal health.展开更多
The sensitivity of the dark photon search through invisible decay final states in low-background experiments relies sig-nificantly on the neutron and muon veto efficiencies,which depend on the amount of material used ...The sensitivity of the dark photon search through invisible decay final states in low-background experiments relies sig-nificantly on the neutron and muon veto efficiencies,which depend on the amount of material used and the design of the detector geometry.This paper presents the optimized design of the hadronic calorimeter(HCAL)used in the DarkSHINE experiment,which is studied using a GEANT4-based simulation framework.The geometry is optimized by comparing a traditional design with uniform absorbers to one that uses different thicknesses at different locations on the detector,which enhances the efficiency of vetoing low-energy neutrons at the sub-GeV level.The overall size and total amount of material used in the HCAL are optimized to be lower,owing to the load and budget requirements,whereas the overall performance is studied to satisfy the physical objectives.展开更多
Stainless steels are used in a wide range of complex environments due to their excellent corrosion resistance.Multiphase stainless steels can offer an excellent combination of strength,toughness and corrosion resistan...Stainless steels are used in a wide range of complex environments due to their excellent corrosion resistance.Multiphase stainless steels can offer an excellent combination of strength,toughness and corrosion resistance due to the coexistence of different microstructures.The microstructure and mechanical properties of a novel cast multiphase stainless steel,composed of martensite,ferrite,and austenite,were investigated following appropriate heat treatment processes:solution treatment at 1,050℃ for 0.5 h followed by water quenching to room temperature,and aging treatment at 500℃ for 4 h followed by water quenching to room temperature.Results show reversed austenite is formed by diffusion of Ni element during aging process,and the enrichment of Ni atoms directly determines the mechanical stability of austenite.The austenite with a lower Ni content undergoes a martensitic transformation during plastic deformation.The tensile strength of the specimen exceeds 1,100 MPa and the elongation exceeds 24%after solid solution,and further increases to 1,247 MPa and 25%after aging treatment.This enhancement is due to the TRIP effect of austenite and the precipitation of the nanoscale G-phase pinning dislocations in ferrite and martensite.展开更多
The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigat...The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear.展开更多
AIM:To elucidate whether differences exist in the impact on retarding the elongation of axial length(AL)among children with myopia when utilizing orthokeratology(ortho-k)lenses employing the corneal refractive therapy...AIM:To elucidate whether differences exist in the impact on retarding the elongation of axial length(AL)among children with myopia when utilizing orthokeratology(ortho-k)lenses employing the corneal refractive therapy(CRT)design versus those employing the vision shaping treatment(VST)design.METHODS:This retrospective clinical trial aimed to collect and analyze AL data from individuals who wore ortho-k lenses for three years.A total of 654 subjects were enrolled and prescribed one of the three specific brands of ortho-k lenses:CRT,Euclid,and Mouldway.The study’s primary focus was to compare the rates of AL elongation and myopic progression across these three brands of ortho-k lenses.RESULTS:In the 3-year follow-up,the AL elongation exhibited variations of 0.73±0.36 mm in the CRT lens group,0.59±0.37 mm in the Euclid lens group,and 0.63±0.38 mm in the Mouldway lens group.A noteworthy disparity emerged between the CRT and Mouldway groups(P<0.01),as well as between the CRT and Euclid groups(P<0.001).Additionally,it was observed that 32.1%of participants who wore CRT lenses experienced a decelerated progression of myopia,in contrast to 47.2%in the Euclid group and 44.4%in the Mouldway group.Statistical analyses revealed a statistically significant distinction between the CRT and Euclid groups(P<0.01),and similarly,the CRT group demonstrated a statistically significant difference when compared to the Mouldway group(P<0.05).CONCLUSION:Ortho-k lenses represent a pragmatic strategy for mitigating the advancement of myopia.In contradistinction to ortho-k lenses utilizing the CRT design,those employing the VST design exhibited a more favorable impact regarding retarding AL elongation.展开更多
Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses o...Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses of wheat spikelets at various positions,leaves,and stems and the interactions between them at physiological levels remain unclear.In the present study,two-year treatments at terminal spikelet stage under two temperatures(2 C,-2 C) and durations(1,2,and 3 days) were imposed in an artificial climate chamber to compare the effects of LSC on grain number and yield in the wheat cultivars Yannong 19(YN19,cold-tolerant) and Xinmai 26(XM26,cold-sensitive).The night temperature regimes were designed to reproduce natural temperature variation.LSC delayed plant growth and inhibited spike and floret differentiation,leading to high yield losses in both cultivars.LSC reduced dry matter accumulation(DMA,g) in spikes,stems,and leaves,reducing the DMA ratios of the spike to leaf and spike to stem.Plant cell wall invertase(CWINV) activity increased in upper and basal spikelets in YN19,whereas CWINV increased in middle spikelets in XM26.Under LSC,soluble sugar and glucose were transported and distributed mainly in upper and basal spikelets for glume and rachis development,so that spike development was relatively complete in YN19,whereas the upper and basal spikelets were severely damaged and most of the glumes in middle spikelets were relatively completely developed in XM26,resulting in pollen abortion mainly in upper and basal spikelets.The development of glumes and rachides was influenced and grain number per spike was decreased after LSC,with kernels present mainly in middle spikelets.Overall,reduced total DMA and dry matter partitioning to spikes under LSC results in poor spikelet development,leading to high losses of grain yield.展开更多
半导体光催化剂是一种极具前景的绿色催化剂,广泛用于污染物降解、水解制氢和有机合成等领域,有望利用太阳能来解决能源和环境问题,是当前的研究前沿和热点.然而,单组分半导体光催化剂的光生电子和空穴容易复合,导致量子效率差和光催化...半导体光催化剂是一种极具前景的绿色催化剂,广泛用于污染物降解、水解制氢和有机合成等领域,有望利用太阳能来解决能源和环境问题,是当前的研究前沿和热点.然而,单组分半导体光催化剂的光生电子和空穴容易复合,导致量子效率差和光催化效率低.近年人们发现,将两种或多种催化材料结合,构建异质结光催化体系可有效促进光生电子-空穴分离.但传统的异质结体系中光生电子的还原性和光生空穴的氧化性通常在电荷转移后变弱,因此,很难同时具备高电荷转移效率和强氧化还原能力.研究发现,构建Z型异质结光催化体系不仅可以减少本体电子-空穴的复合,使其在不同半导体材料上实现空间分离,具有光谱响应宽、电荷分离效率高和稳定性高等优势,而且能保持良好的氧化还原能力.在半导体材料领域,石墨相氮化碳(g-C_(3)N_(4))作为一种无金属聚合物半导体,具有良好的热化学稳定性、电学和光学特性,但存在量子效率低和适用范围窄等局限性.而五氧化二钒(V_(2)O_(5))是一种重要的过渡金属氧化物半导体,由于具有良好的电学和光学性能被广泛用于锂离子电池、气敏传感器和光电器件.V_(2)O_(5)能带间隙(~2.19 e V)窄,具有合适的能量频带边缘(ECB=0.81 e V,EVB=3.0 e V),可以与g-C_(3)N_(4)(ECB=1.14 e V,EVB=1.59 e V)很好地匹配,形成稳定状态的Z型光催化体系,并提高光催化有机合成反应的效率.本文以三聚氰胺和偏钒酸铵为原料,采用热处理法分别制备g-C_(3)N_(4)和V_(2)O_(5),采用水热法制备Z型V_(2)O_(5)/g-C_(3)N_(4)二元复合材料.X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和紫外-可见光吸收光谱(UV-Vis)等结果表明,成功制备了Z型V_(2)O_(5)/g-C_(3)N_(4).UV-Vis结果表明,V_(2)O_(5)/g-C_(3)N_(4)具有较宽的光吸收范围,从而提高了复合半导体材料的光学性能.在温和条件下,以未活化烯烃修饰的喹唑啉酮和芳基氧膦为反应物,V_(2)O_(5)/g-C_(3)N_(4)为多相光催化剂,进行膦酰化自由基偶联反应,制得一系列环合的膦酰化喹唑啉酮,收率为63%-83%.该反应具有原料易得、条件温和、底物范围广、产品收率及区域选择性良好等优点,同时催化剂循环使用性能良好.值得注意的是,不同吸电子取代基、供电子取代基修饰的喹唑啉酮和非对称结构的芳基氧膦均能兼容于该反应体系,并以中等至良好的收率得到了各种膦酰化喹唑啉酮化合物.本文采用的合成策略同样适用于三氟甲基化、二氟烷基化和芳基磺酰化等自由基串联环化反应,且具有良好的催化性能.机理研究结果表明,V_(2)O_(5)/g-C_(3)N_(4)被光激发后,V_(2)O_(5)导带(CB)上的光生电子与g-C_(3)N_(4)价带(VB)上的光生空穴迅速复合,导致g-C_(3)N_(4)的导带上无法与本体空穴复合的电子发生单电子转移(SET)过程,且与分子氧(空气中)反应生成超氧阴离子自由基(O_(2)·^(-)).V_(2)O_(5)价带上的空穴氧化芳基氧膦产生自由基阳离子,去质子化产生氧膦自由基,随后加成到未活化烯烃生成新的自由基物种,最后发生分子内环化反应,得到目标产物.V_(2)O_(5)/g-C_(3)N_(4)成本较低,且该光催化反应策略可实现克级制备,循环使用5次后催化活性保持不变.综上,本文可为光催化自由基串联环化反应,杂环化合物合成研究和Z型异质结的光催化应用提供参考.展开更多
BACKGROUND Most patients with acute exacerbation chronic obstructive pulmonary disease(AECOPD)have respiratory failure that necessitates active correction and the improvement of oxygenation is particularly important d...BACKGROUND Most patients with acute exacerbation chronic obstructive pulmonary disease(AECOPD)have respiratory failure that necessitates active correction and the improvement of oxygenation is particularly important during treatment.High flow nasal cannula(HFNC)oxygen therapy is a non-invasive respiratory aid that is widely used in the clinic that improves oxygenation state,reduces dead space ventilation and breathing effort,protects the loss of cilia in the airways,and improves patient comfort.AIM To compare HFNC and non-invasive positive pressure ventilation in the treatment of patients with AECOPD.METHODS Eighty AECOPD patients were included in the study.The patients were in the intensive care department of our hospital from October 2019 to October 2021.The patients were divided into the control and treatment groups according to the different treatment methods with 40 patients in each group.Differences in patient comfort,blood gas analysis and infection indices were analyzed between the two groups.RESULTS After treatment,symptoms including nasal,throat and chest discomfort were significantly lower in the treatment group compared to the control group on the 3rd and 5th days(P<0.05).Before treatment,the PaO_(2),PaO_(2)/FiO_(2),PaCO_(2),and SaO_(2)in the two groups of patients were not significantly different(P>0.05).After treatment,the same indicators were significantly improved in both patient groups but had improved more in the treatment group compared to the control group(P<0.05).After treatment,the white blood cell count,and the levels of C-reactive protein and calcitonin in patients in the treatment group were significantly higher compared to patients in the control group(P<0.05).CONCLUSION HFNC treatment can improve the ventilation of AECOPD patients whilst also improving patient comfort,and reducing complications.HFNC is a clinically valuable technique for the treatment of AECOPD.展开更多
Understanding the intrinsic activity of oxygen evolution reaction(OER) is crucial for catalyst design.To date,different metal-doping strategies have been developed to achieve this,but the involving mechanisms remain u...Understanding the intrinsic activity of oxygen evolution reaction(OER) is crucial for catalyst design.To date,different metal-doping strategies have been developed to achieve this,but the involving mechanisms remain unclear.Here,the electronic structure of the transition metal-doped NiFe_(2)O_(4)(001) surface is scrutinized for OER intrinsic activity using density functional theory calculations.Five 3d-orbital filling metals(Ti,V,Cr,Mn,and Co) are introduced as dopants onto A-and B-layers of the NiFe_(2)O_(4)(001) surface,and variation of oxidation states over Fe sites is observed on B-layer.Analyzing the magnetic moment and charge transfer of surface cation sites reveals that the variation of Fe oxidation states originates from the super-exchange effect and is influenced by the t2g-electron configuration of 3d metal dopants.This trend governs the generation of highly-active Fe3+sites on the B-layer,the adsorption strength of OER intermediates,i.e.,*O and*OH,and therefore the intrinsic activity.The finding of super-exchange mechanism induced by 3d early metal doping offers insights into electronic structure tailoring strategies for improving the intrinsic activity of OER electrocatalysts.展开更多
基金This work was supported by the National Key Research and Development Program of China(Grant No.2022YFE0104800 to Feng Han)the National Natural Science Foundation of China(Grant No.82003764 to Lili Feng)the Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.19KJB350001 to Lili Feng).
文摘Glioblastoma(GBM)is a highly vascularized malignant brain tumor with poor clinical outcomes.Vasculogenic mimicry(VM)formed by aggressive GBM cells is an alternative approach for tumor blood supply and contributes to the failure of anti-angiogenic therapy.To date,there is still a lack of effective drugs that target VM formation in GBM.In the present study,we evaluated the effects of the plant cyclopeptide moroidin on VM formed by GBM cells and investigated its underlying molecular mechanisms.Moroidin significantly suppressed cell migration,tube formation,and the expression levels ofα-smooth muscle actin and matrix metalloproteinase-9 in human GBM cell lines at sublethal concentrations.The RNA sequencing data suggested the involvement of the epithelialmesenchymal transition(EMT)pathway in the mechanism of moroidin.Exposure to moroidin led to a concentration-dependent decrease in the expression levels of the EMT markers N-cadherin and vimentin in GBM cells.Moreover,moroidin significantly reduced the level of phosphorylated extracellular signal-regulated protein kinase(p-ERK)and inhibited the activation of β-catenin.Finally,we demonstrated that the plant cyclopeptide moroidin inhibited VM formation by GBM cells through inhibiting the ERK/β-catenin-mediated EMT.Therefore,our study indicates a potential application of moroidin as an anti-VM agent in the treatment of GBM.
基金supported by the National Natural Science Foundation of China(Youth Program),No.81901282(to XC)the National Natural Science Foundation of China,Nos.81401416(to PX),81870992(to PX),81870856(to XC and MZ)+3 种基金Guangdong Basic and Applied Basic Research Foundation the Science Foundation,No.2019A1515011189(to XC)Central Government Guiding Local Science and Technology Development Projects,No.ZYYD2022C17(to PX)Key Project of Guangzhou Health Commission,No.2019-ZD-09(to PX)Science and Technology Planning Project of Guangzhou,Nos.202102020029(to XC),202102010010(to PX)。
文摘Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucial mitochondrial protein,has been reported to cause Parkinson's disease.FIFO-ATPase participates in the synthesis of cellular adenosine triphosphate(ATP)and plays a central role in mitochondrial energy metabolism.However,the specific roles of wild-type(WT)CHCHD2 and T611-mutant CHCHD2 in regulating F1FO-ATPase activity in Parkinson's disease,as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1FO-ATPase activity,remain unclea r.Therefore,in this study,we expressed WT CHCHD2 and T61l-mutant CHCHD2 in an MPP^(+)-induced SH-SY5Y cell model of PD.We found that CHCHD2 protected mitochondria from developing MPP^(+)-induced dysfunction.Under normal conditions,ove rexpression of WT CHCHD2 promoted F1FO-ATPase assembly,while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1FO-ATPase assembly.In addition,mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1FO-ATPase.Three weeks after transfection with AAV-CHCHD2 T61I,we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model.These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function.
基金supported by the National Natural Science Foundation of China(T2322015,22209094,22209093,and 22109086)the National Key Research and Development Program(2021YFB2500300)+2 种基金the Open Research Fund of CNMGE Platform&NSCC-TJOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Tsinghua University Initiative Scientific Research Program。
文摘Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.
基金This work was supported by grants from the National Natural Science Foundation of China(82103183,82102803,82272849)the Natural Science Foundation of Hunan Province(2022JJ40767,2021JJ40976)+1 种基金the Natural Science Fund for Outstanding Youths in Hunan Province(2023JJ20093)the National Key Research and Development Program(2022YFC2504700).
文摘Dear Editor,Ferroptosis,an iron-dependent form of cell death driven by overwhelming lipid peroxidation,represents a vulnerability in cancers,and therapeutic strategies to further potentiate ferroptosis hold great potential for melanoma treatment.
基金supported by Yunnan Fundamental Research Projects(No.202201BE070001-014)Doctoral Scientific Research Foundation of Hubei University of Automotive Technology(No.BK202336)+4 种基金National Natural Science Foundation of China(No.52071035)Program for Science and Technology Innovation Team in Colleges of Hubei Province(No.T2021012)Outstanding Young Scientific&Technological Innovation Team Plan of Colleges and Universities in Hubei Province(No.T201518 and No.T201811)Major Science and Technology Project of Hubei Province(No.2022AAA001)Key R&D Project of Hubei Province(No.2021BAB019)。
文摘In recent years,a new class of metallic materials featuring heterogeneous structures has emerged.These materials consist of distinct soft and hard domains with significant differences in mechanical properties,allowing them to maintain high strength while offering superior ductility.Magnesium(Mg)alloys,renowned for their low density,high specific strength,exceptional vibration damping,and electromagnetic shielding properties,exhibit tremendous potential as lightweight and functional materials.Despite their advantageous properties,high-strength Mg alloys often suffer from limited ductility.However,the emergence of heterogeneous materials provides a fresh perspective for the development of Mg alloys with both high strength and ductility.This article provided a fundamental overview of heterostructured materials and systematically reviewed the recent research progress in the design of Mg alloys with strength-ductility balance based on heterostructure principles.The review encompassed various aspects,including preparation methods,formation mechanisms of diverse heterostructures,and mechanical properties,both within domestic and international contexts.On this basis,the article discussed the challenges encountered in the design and fabrication of heterostructured Mg alloys,as well as the urgent issues that require attention and resolution in the future.
基金National Natural Science Foundation of China (22209094, 22209093)Research Funds of Institute of Zhejiang University-Quzhou (No. IZQ2023RCZX032)+2 种基金USTB Mat Com of Beijing Advanced Innovation Center for Materials Genome EngineeringMinistry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90254)project Quantum materials for applications in sustainable technologies (QM4ST), funded as project No. CZ.02.01.01 /00/22_008/0004572。
文摘Two-dimensional transition metal carbides(MXenes) have been demonstrated to be promising supports for single-atom catalysts(SACs) to enable efficient oxygen evolution reaction(OER).However,the rational design of MXene-based SACs depends on an experimental trial-and-error approach.A theoretical guidance principle is highly expected for the efficient evaluation of MXene-based SACs.Herein,highthroughput screening was performed through first-principles calculations and machine learning techniques.Ti_(3)C_(2)(OH)_(x),V_(3)C_(2)(OH)_(x),Zr_(3)C_(2)(OH)_(x),Nb_(3)C_(2)(OH)_(x),Hf_(3)C_(2)(OH)_(x),Ta_(3)C_(2)(OH)_(x),and W_(3)C_(2)(OH)_(x) were screened out based on their excellent stability.Zn,Pd,Ag,Cd,Au,and Hg were proposed to be promising single atoms anchored in MXenes based on cohesive energy analysis.Hf_(3)C_(2)(OH)_(x) with a Pd single atom delivers a theoretical overpotential of 81 mV.Both moderate electron-deficient state and high covalency of metal-carbon bonds were critical features for the high OER reactivity.This principle is expected to be a promising approach to the rational design of OER catalysts for metal-air batteries,fuel cells,and other OER-based energy storage devices.
文摘Background The aim of this experiment was to investigate the effect of different levels of betaine(Bet)inclusion in the diet on the intestinal health of growing rabbits under summer heat.A total of 100 weaned Qixing meat rabbits aged 35 d with body weight of 748.61±38.59 g were randomly divided into 5 treatment groups:control group(basal diet)and Bet groups(basal diet+0.75,1.0,1.5 or 2.0 g/kg Bet).The average daily temperature in the rabbitry during the experiment was 30.48°C and the relative humidity was 69.44%.Results Dietary addition of Bet had no significant effect on growth performance and health status of growing rabbits(P>0.05),but it increased ileal secretory immunoglobulin A content compared to the control under summer heat(P<0.05).Addition of 0.75 g/kg Bet up-regulated jejunal IL-4,down-regulated ileal TNF-αexpression(P<0.05).The addition of 1.0 g/kg Bet increased the villi height(VH)in the jejunum(P<0.05).Serum glucose levels were reduced,and the expression of SLC6A20 was up-regulated in jejunum and ileum of rabbits fed with 1.5 g/kg Bet(P<0.05).When added at 2.0 g/kg,Bet reduced serum HSP70 content,increased jejunal VH,and up-regulated duodenal SLC7A6,SLC38A2,mTOR and 4EBP-2 expression(P<0.05).Correlation analysis revealed that intestinal mTOR expression was significantly and positively correlated with SLC7A6,SLC38A2,SLC36A1 and IL-4 expression(P<0.05).Conclusions Dietary addition of Bet can up-regulate the expression of anti-inflammatory factors through the AAT/mTOR pathway,improve the intestinal immune function,alleviate intestinal damage in growing rabbits caused by summer heat,and improve intestinal health.
基金supported by National Key R&D Program of China(Nos.2023YFA1606904 and 2023YFA1606900)National Natural Science Foundation of China(No.12150006)Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University(No.21TQ1400209).
文摘The sensitivity of the dark photon search through invisible decay final states in low-background experiments relies sig-nificantly on the neutron and muon veto efficiencies,which depend on the amount of material used and the design of the detector geometry.This paper presents the optimized design of the hadronic calorimeter(HCAL)used in the DarkSHINE experiment,which is studied using a GEANT4-based simulation framework.The geometry is optimized by comparing a traditional design with uniform absorbers to one that uses different thicknesses at different locations on the detector,which enhances the efficiency of vetoing low-energy neutrons at the sub-GeV level.The overall size and total amount of material used in the HCAL are optimized to be lower,owing to the load and budget requirements,whereas the overall performance is studied to satisfy the physical objectives.
基金supported by the Inner Mongolia Autonomous Region Science and Technology Major Special Project(Grant No.2021SZD0082).
文摘Stainless steels are used in a wide range of complex environments due to their excellent corrosion resistance.Multiphase stainless steels can offer an excellent combination of strength,toughness and corrosion resistance due to the coexistence of different microstructures.The microstructure and mechanical properties of a novel cast multiphase stainless steel,composed of martensite,ferrite,and austenite,were investigated following appropriate heat treatment processes:solution treatment at 1,050℃ for 0.5 h followed by water quenching to room temperature,and aging treatment at 500℃ for 4 h followed by water quenching to room temperature.Results show reversed austenite is formed by diffusion of Ni element during aging process,and the enrichment of Ni atoms directly determines the mechanical stability of austenite.The austenite with a lower Ni content undergoes a martensitic transformation during plastic deformation.The tensile strength of the specimen exceeds 1,100 MPa and the elongation exceeds 24%after solid solution,and further increases to 1,247 MPa and 25%after aging treatment.This enhancement is due to the TRIP effect of austenite and the precipitation of the nanoscale G-phase pinning dislocations in ferrite and martensite.
基金supported by the Science and Technology Innovation Development Project of Yantai(No.2023ZDX016)。
文摘The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear.
文摘AIM:To elucidate whether differences exist in the impact on retarding the elongation of axial length(AL)among children with myopia when utilizing orthokeratology(ortho-k)lenses employing the corneal refractive therapy(CRT)design versus those employing the vision shaping treatment(VST)design.METHODS:This retrospective clinical trial aimed to collect and analyze AL data from individuals who wore ortho-k lenses for three years.A total of 654 subjects were enrolled and prescribed one of the three specific brands of ortho-k lenses:CRT,Euclid,and Mouldway.The study’s primary focus was to compare the rates of AL elongation and myopic progression across these three brands of ortho-k lenses.RESULTS:In the 3-year follow-up,the AL elongation exhibited variations of 0.73±0.36 mm in the CRT lens group,0.59±0.37 mm in the Euclid lens group,and 0.63±0.38 mm in the Mouldway lens group.A noteworthy disparity emerged between the CRT and Mouldway groups(P<0.01),as well as between the CRT and Euclid groups(P<0.001).Additionally,it was observed that 32.1%of participants who wore CRT lenses experienced a decelerated progression of myopia,in contrast to 47.2%in the Euclid group and 44.4%in the Mouldway group.Statistical analyses revealed a statistically significant distinction between the CRT and Euclid groups(P<0.01),and similarly,the CRT group demonstrated a statistically significant difference when compared to the Mouldway group(P<0.05).CONCLUSION:Ortho-k lenses represent a pragmatic strategy for mitigating the advancement of myopia.In contradistinction to ortho-k lenses utilizing the CRT design,those employing the VST design exhibited a more favorable impact regarding retarding AL elongation.
基金supported by the National Key Research and Development Program of China (2017YFD0300408)the Major Research Projects of Anhui (202003b06020021)the Graduate Innovation Fund of Anhui Agricultural University (2020 ysj-5)。
文摘Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses of wheat spikelets at various positions,leaves,and stems and the interactions between them at physiological levels remain unclear.In the present study,two-year treatments at terminal spikelet stage under two temperatures(2 C,-2 C) and durations(1,2,and 3 days) were imposed in an artificial climate chamber to compare the effects of LSC on grain number and yield in the wheat cultivars Yannong 19(YN19,cold-tolerant) and Xinmai 26(XM26,cold-sensitive).The night temperature regimes were designed to reproduce natural temperature variation.LSC delayed plant growth and inhibited spike and floret differentiation,leading to high yield losses in both cultivars.LSC reduced dry matter accumulation(DMA,g) in spikes,stems,and leaves,reducing the DMA ratios of the spike to leaf and spike to stem.Plant cell wall invertase(CWINV) activity increased in upper and basal spikelets in YN19,whereas CWINV increased in middle spikelets in XM26.Under LSC,soluble sugar and glucose were transported and distributed mainly in upper and basal spikelets for glume and rachis development,so that spike development was relatively complete in YN19,whereas the upper and basal spikelets were severely damaged and most of the glumes in middle spikelets were relatively completely developed in XM26,resulting in pollen abortion mainly in upper and basal spikelets.The development of glumes and rachides was influenced and grain number per spike was decreased after LSC,with kernels present mainly in middle spikelets.Overall,reduced total DMA and dry matter partitioning to spikes under LSC results in poor spikelet development,leading to high losses of grain yield.
文摘半导体光催化剂是一种极具前景的绿色催化剂,广泛用于污染物降解、水解制氢和有机合成等领域,有望利用太阳能来解决能源和环境问题,是当前的研究前沿和热点.然而,单组分半导体光催化剂的光生电子和空穴容易复合,导致量子效率差和光催化效率低.近年人们发现,将两种或多种催化材料结合,构建异质结光催化体系可有效促进光生电子-空穴分离.但传统的异质结体系中光生电子的还原性和光生空穴的氧化性通常在电荷转移后变弱,因此,很难同时具备高电荷转移效率和强氧化还原能力.研究发现,构建Z型异质结光催化体系不仅可以减少本体电子-空穴的复合,使其在不同半导体材料上实现空间分离,具有光谱响应宽、电荷分离效率高和稳定性高等优势,而且能保持良好的氧化还原能力.在半导体材料领域,石墨相氮化碳(g-C_(3)N_(4))作为一种无金属聚合物半导体,具有良好的热化学稳定性、电学和光学特性,但存在量子效率低和适用范围窄等局限性.而五氧化二钒(V_(2)O_(5))是一种重要的过渡金属氧化物半导体,由于具有良好的电学和光学性能被广泛用于锂离子电池、气敏传感器和光电器件.V_(2)O_(5)能带间隙(~2.19 e V)窄,具有合适的能量频带边缘(ECB=0.81 e V,EVB=3.0 e V),可以与g-C_(3)N_(4)(ECB=1.14 e V,EVB=1.59 e V)很好地匹配,形成稳定状态的Z型光催化体系,并提高光催化有机合成反应的效率.本文以三聚氰胺和偏钒酸铵为原料,采用热处理法分别制备g-C_(3)N_(4)和V_(2)O_(5),采用水热法制备Z型V_(2)O_(5)/g-C_(3)N_(4)二元复合材料.X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和紫外-可见光吸收光谱(UV-Vis)等结果表明,成功制备了Z型V_(2)O_(5)/g-C_(3)N_(4).UV-Vis结果表明,V_(2)O_(5)/g-C_(3)N_(4)具有较宽的光吸收范围,从而提高了复合半导体材料的光学性能.在温和条件下,以未活化烯烃修饰的喹唑啉酮和芳基氧膦为反应物,V_(2)O_(5)/g-C_(3)N_(4)为多相光催化剂,进行膦酰化自由基偶联反应,制得一系列环合的膦酰化喹唑啉酮,收率为63%-83%.该反应具有原料易得、条件温和、底物范围广、产品收率及区域选择性良好等优点,同时催化剂循环使用性能良好.值得注意的是,不同吸电子取代基、供电子取代基修饰的喹唑啉酮和非对称结构的芳基氧膦均能兼容于该反应体系,并以中等至良好的收率得到了各种膦酰化喹唑啉酮化合物.本文采用的合成策略同样适用于三氟甲基化、二氟烷基化和芳基磺酰化等自由基串联环化反应,且具有良好的催化性能.机理研究结果表明,V_(2)O_(5)/g-C_(3)N_(4)被光激发后,V_(2)O_(5)导带(CB)上的光生电子与g-C_(3)N_(4)价带(VB)上的光生空穴迅速复合,导致g-C_(3)N_(4)的导带上无法与本体空穴复合的电子发生单电子转移(SET)过程,且与分子氧(空气中)反应生成超氧阴离子自由基(O_(2)·^(-)).V_(2)O_(5)价带上的空穴氧化芳基氧膦产生自由基阳离子,去质子化产生氧膦自由基,随后加成到未活化烯烃生成新的自由基物种,最后发生分子内环化反应,得到目标产物.V_(2)O_(5)/g-C_(3)N_(4)成本较低,且该光催化反应策略可实现克级制备,循环使用5次后催化活性保持不变.综上,本文可为光催化自由基串联环化反应,杂环化合物合成研究和Z型异质结的光催化应用提供参考.
文摘BACKGROUND Most patients with acute exacerbation chronic obstructive pulmonary disease(AECOPD)have respiratory failure that necessitates active correction and the improvement of oxygenation is particularly important during treatment.High flow nasal cannula(HFNC)oxygen therapy is a non-invasive respiratory aid that is widely used in the clinic that improves oxygenation state,reduces dead space ventilation and breathing effort,protects the loss of cilia in the airways,and improves patient comfort.AIM To compare HFNC and non-invasive positive pressure ventilation in the treatment of patients with AECOPD.METHODS Eighty AECOPD patients were included in the study.The patients were in the intensive care department of our hospital from October 2019 to October 2021.The patients were divided into the control and treatment groups according to the different treatment methods with 40 patients in each group.Differences in patient comfort,blood gas analysis and infection indices were analyzed between the two groups.RESULTS After treatment,symptoms including nasal,throat and chest discomfort were significantly lower in the treatment group compared to the control group on the 3rd and 5th days(P<0.05).Before treatment,the PaO_(2),PaO_(2)/FiO_(2),PaCO_(2),and SaO_(2)in the two groups of patients were not significantly different(P>0.05).After treatment,the same indicators were significantly improved in both patient groups but had improved more in the treatment group compared to the control group(P<0.05).After treatment,the white blood cell count,and the levels of C-reactive protein and calcitonin in patients in the treatment group were significantly higher compared to patients in the control group(P<0.05).CONCLUSION HFNC treatment can improve the ventilation of AECOPD patients whilst also improving patient comfort,and reducing complications.HFNC is a clinically valuable technique for the treatment of AECOPD.
基金supported by the Australian Research Council(FT170100224,DP210103892,IC200100023)support from Tsinghua National Laboratory for Information Science and Technology for theoretical simulations。
文摘Understanding the intrinsic activity of oxygen evolution reaction(OER) is crucial for catalyst design.To date,different metal-doping strategies have been developed to achieve this,but the involving mechanisms remain unclear.Here,the electronic structure of the transition metal-doped NiFe_(2)O_(4)(001) surface is scrutinized for OER intrinsic activity using density functional theory calculations.Five 3d-orbital filling metals(Ti,V,Cr,Mn,and Co) are introduced as dopants onto A-and B-layers of the NiFe_(2)O_(4)(001) surface,and variation of oxidation states over Fe sites is observed on B-layer.Analyzing the magnetic moment and charge transfer of surface cation sites reveals that the variation of Fe oxidation states originates from the super-exchange effect and is influenced by the t2g-electron configuration of 3d metal dopants.This trend governs the generation of highly-active Fe3+sites on the B-layer,the adsorption strength of OER intermediates,i.e.,*O and*OH,and therefore the intrinsic activity.The finding of super-exchange mechanism induced by 3d early metal doping offers insights into electronic structure tailoring strategies for improving the intrinsic activity of OER electrocatalysts.