亲核氧化反应在可持续生产增值化学品中扮演着重要角色。电催化甘油氧化反应作为亲核氧化反应的一种重要类型,可以制得包括甲酸在内的C_(1)至C_(3)衍生产物。非贵金属氢氧化物/羟基氧化物被广泛应用于甘油氧化反应,但在中等电位下难以...亲核氧化反应在可持续生产增值化学品中扮演着重要角色。电催化甘油氧化反应作为亲核氧化反应的一种重要类型,可以制得包括甲酸在内的C_(1)至C_(3)衍生产物。非贵金属氢氧化物/羟基氧化物被广泛应用于甘油氧化反应,但在中等电位下难以达到工业级电流密度(大于300 mA·cm^(-2))。研究表明,氢氧化物/羟基氧化物催化的甘油氧化反应通过间接氧化机理进行,即通过电生成的含有亲电吸附氧的羟基氧化物氧化亲核试剂(甘油)。因此,理解甘油氧化反应中电催化剂的演变至关重要。在本文中,通过循环伏安法活化钼酸镍(NiMoO_(4)),开发了一种钼掺杂的羟基氧化镍(Mo-NiOOH)催化剂。通过多种表征方法对Mo-NiOOH进行了系统表征,结果显示,Mo-NiOOH继承了NiMoO_(4)前驱体的纳米片阵列形貌,但Mo含量降低,证明循环伏安法活化后实现了从氧化物到羟基氧化物的相重构。此外,Mo-NiOOH中Ni^(3+)/Ni^(2+)的比例高于循环伏安法活化制备的NiOOH。在活化过程中,Mo物种从NiMoO_(4)中浸出,制备得到的Mo-NiOOH保留了NiMoO_(4)前驱体的纳米片阵列形貌。与氢氧化镍(Ni(OH)_(2))经循环伏安法活化合成的NiOOH相比,Mo-NiOOH具有更高的Ni^(3+)/Ni^(2+)比例以及更高的电化学比表面积(ECSAs),且促进了Ni^(2+)氧化为Ni^(3+)。因此,Mo-NiOOH达到高电流密度(400mA·cm^(-2))的电位(1.51V vs.RHE)低于NiOOH(1.84 V vs.RHE)。此外,Mo-NiOOH表现出高于NiOOH的甲酸盐法拉第效率(84.7%vs.59.6%),表明钼掺杂加速了碳-碳键断裂。多电位阶跃实验显示,NiOOH和Mo-NiOOH催化的甘油电氧化通过类似的羟基氧化物介导的间接氧化机理进行。原位电化学阻抗谱和原位拉曼光谱证实,Mo掺杂促进了甘油氧化反应动力学以及Ni^(2+)氧化为Ni^(3+)的过程,导致Mo-NiOOH比NiOOH具有更高的活性和甲酸选择性。本研究通过可溶性阴离子浸出策略来调节羟基氧化物表面结构,为设计高性能亲核氧化反应电催化剂提供了指导。展开更多
Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive speci...Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.展开更多
In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can b...In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.展开更多
AIM:To investigate the antioxidant protective effect of Lycium barbarum glycopeptide(LbGP)pretreatment on retinal ischemia-reperfusion(I/R)injury(RIRI)in rats.METHODS:RIRI was induced in Sprague Dawley rats through an...AIM:To investigate the antioxidant protective effect of Lycium barbarum glycopeptide(LbGP)pretreatment on retinal ischemia-reperfusion(I/R)injury(RIRI)in rats.METHODS:RIRI was induced in Sprague Dawley rats through anterior chamber perfusion,and pretreatment involved administering LbGP via gavage for 7d.After 24h of reperfusion,serum alanine aminotransferase(ALT),aspartate aminotransferase(AST),and creatinine(CREA)levels,retinal structure,expression of Caspase-3 and Caspase-8,superoxide dismutase(SOD)activity,and malondialdehyde(MDA)in the retina were measured.RESULTS:The pretreatment with LbGP effectively protected the retina and retinal tissue from edema and inflammation in the ganglion cell layer(GCL)and nerve fiber layer(NFL)of rats subjected to RIRI,as shown by light microscopy and optical coherence tomography(OCT).Serum AST was higher in the model group than in the blank group(P=0.042),but no difference was found in ALT,AST,and CREA across the LbGP groups and model group.Caspase-3 expression was higher in the model group than in the blank group(P=0.006),but no difference was found among LbGP groups and the model group.Caspase-8 expression was higher in the model group than in the blank group(P=0.000),and lower in the 400 mg/kg LbGP group than in the model group(P=0.016).SOD activity was lower in the model group than in the blank group(P=0.001),and the decrease was slower in the 400 mg/kg LbGP group than in the model group(P=0.003).MDA content was higher in the model group than in the blank group(P=0.001),and lower in the 400 mg/kg LbGP group than in the model group(P=0.016).The pretreatment with LbGP did not result in any observed liver or renal toxicity in the model.CONCLUSION:LbGP pretreatment exhibits dosedependent anti-inflammatory,and antioxidative effects by reducing Caspase-8 expression,preventing declines of SOD activity,and decreasing MDA content in the RIRI rat model.展开更多
With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smar...With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.展开更多
A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction pro...A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.展开更多
Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat t...Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems.展开更多
Colorectal cancer(CRC)is a leading global health concern,and early identification and precise prognosis play a vital role in enhancing patient results.Endoscopy is a minimally invasive imaging technique that is crucia...Colorectal cancer(CRC)is a leading global health concern,and early identification and precise prognosis play a vital role in enhancing patient results.Endoscopy is a minimally invasive imaging technique that is crucial for the screening,diagnosis,and treatment of CRC.This editorial discusses the importance of advances in endoscopic techniques,the integration of artificial intelligence,and the potential of novel technologies in enhancing the diagnosis and management of CRC.展开更多
In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate ...In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system.The model integrates the geometric deformations of the track,attributed to settlement,as track irregularities.A novel“cyclic model”algorithm was employed to enhance computational efficiency without compromising on precision,a claim that was rigorously validated.The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas.The research primarily focuses on how settlement wavelength,amplitude,and vehicle speed influence operational performance.Key findings indicate that an increase in settlement wavelength can improve vehicle performance,whereas a rise in amplitude can degrade it.The study also establishes settlement thresholds,based on vehicle operation comfort and safety.These insights are pivotal for maintaining and enhancing the safety and efficiency of subway systems,providing a valuable framework for urban infrastructure management and long-term maintenance strategies in metropolitan transit systems.展开更多
The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale,which affects the fracturing effect.Accordingly,we designed and conducted indoor experiments related to ...The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale,which affects the fracturing effect.Accordingly,we designed and conducted indoor experiments related to the changes in macro and microscopic characteristics after the interaction of acid with the shale of Wujiaping Formation,based on which the characteristic law of fracture volume modification after acid fracturing was studied using numerical simulation.The results demonstrate that the pores and fractures are enlarged and the structure is significantly loosened after the acid immersion.And a 15%concentration of hydrochloric acid can effectively dissolve shale.Furthermore,the degree of acid-etching reaction is highly variable because of the different carbonate content,which reveals the strong inhomogeneity of the shale system in the Wujiaping Group reservoir section.After the acid interacted with the shale rock samples,the triaxial compressive strength,elastic modulus,and Poisson’s ratio of shale decreased.Moreover,the evaluation of the effect after acid fracturing simulated by fracturing software revealed that the smaller the value of elastic modulus in shale-based reservoirs,the more favorable the fracture volume modification.This discovery not only provides a theoretical basis for the expansion and extension patterns of acid-fracturing in carbonaceous shale formations but also offers research methods and theoretical insights for the fundamental exploration of other deep-seated oil and gas resources.展开更多
BACKGROUND The consistency of pancreatic apparent diffusion coefficient(ADC)values and intravoxel incoherent motion(IVIM)parameter values across different magnetic resonance imaging(MRI)devices significantly impacts t...BACKGROUND The consistency of pancreatic apparent diffusion coefficient(ADC)values and intravoxel incoherent motion(IVIM)parameter values across different magnetic resonance imaging(MRI)devices significantly impacts the patient’s diagnosis and treatment.AIM To explore consistency in image quality,ADC values,and IVIM parameter values among different MRI devices in pancreatic examinations.METHODS This retrospective study was approved by the local ethics committee,and informed consent was obtained from all participants.In total,22 healthy volunteers(10 males and 12 females)aged 24-61 years(mean,28.9±2.3 years)underwent pancreatic diffusion-weighted imaging using 3.0T MRI equipment from three vendors.Two independent observers subjectively scored image quality and measured the pancreas’s overall ADC values and signal-to-noise ratios(SNRs).Subsequently,regions of interest(ROIs)were delineated for the IVIM parameters(true diffusion coefficient,pseudo-diffusion coefficient,and perfusion fraction)using post-processing software.These ROIs were on the head,body,and tail of the pancrease.The subjective image ratings were assessed using the kappa consistency test.Intraclass correlation coefficients(ICCs)and mixed linear models were used to evaluate each device’s quantitative parameter values.Finally,a pairwise analysis of IVIM parameter values across each device was performed using Bland-Altman plots.RESULTS The Kappa value for the subjective ratings of the different observers was 0.776(P<0.05).The ICC values for interobserver and intra-observer agreements for the quantitative parameters were 0.803[95% confidence interval(CI):0.684-0.880]and 0.883(95%CI:0.760-0.945),respectively(P<0.05).The ICCs for the SNR between different devices was comparable(P>0.05),and the ICCs for the ADC values from different devices were 0.870,0.707,and 0.808,respectively(P<0.05).Notably,only a few statistically significant inter-device agreements were observed for different IVIM parameters,and among those,the ICC values were generally low.The mixed linear model results indicated differences(P<0.05)in the f-value for the pancreas head,D-value for the pancreas body,and D-value for the pancreas tail obtained using different MRI machines.The Bland-Altman plots showed significant variability at some data points.CONCLUSION ADC values are consistent among different devices,but the IVIM parameters’repeatability is moderate.Therefore,the variability in the IVIM parameter values may be associated with using different MRI machines.Thus,caution should be exercised when using IVIM parameter values to assess the pancreas.展开更多
The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,t...The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.展开更多
Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery...Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization.展开更多
Aiming at the prior medical knowledge that hepatic ascites only occurs in the severe period of liver cirrhosis, and the severe rupture of the liver capsule curve, when ascites occurs visually, can easily lead to the w...Aiming at the prior medical knowledge that hepatic ascites only occurs in the severe period of liver cirrhosis, and the severe rupture of the liver capsule curve, when ascites occurs visually, can easily lead to the wrong location of the liver capsule, a transposed grayscale statistical threshold method is proposed to solve the problem. Realize the identification of liver ascites. By analyzing the visual characteristics of the liver image, the gray value of the upper half of the ultrasound image is counted column by column from a mathematical point of view, the gray distribution curve is drawn, and the relevant threshold is set for corresponding judgment. At the same time, the gray value above the ascites detection boundary is set to zero. The ablation experiment proved that the ascites detection method and post-processing operation proposed in this paper provide effective support for the precise positioning of the liver capsule curve, quantitative analysis and diagnosis of liver cirrhosis in the later stage. The Hessian matrix is sensitive to linear structure to achieve image enhancement. In view of the low accuracy of the existing liver envelope curve detection method and the incomplete quantitative evaluation of liver cirrhosis, it is proposed to use drift iteration under the synergistic effect of multiple filters. A search algorithm extracts the liver capsule.展开更多
In spite of the numerous advances in the development of H_(2)and O_(2)evolutions upon water splitting,the separation of H_(2)from O_(2)still remains a severe challenge.Herein,the novel dual-functional nanocatalysts Pd...In spite of the numerous advances in the development of H_(2)and O_(2)evolutions upon water splitting,the separation of H_(2)from O_(2)still remains a severe challenge.Herein,the novel dual-functional nanocatalysts Pd/carbon nanosphere(CNS),obtained via immobilization of ultrafine Pd nanoparticles onto CNS,are developed and employed for both selective H_(2)generation from HCOOH dehydrogenation and O_(2)evolution from H_(2)O_(2)decomposition.In these reactions,the highest activities for Pd/CNS-800(i.e.,calcinated at 800℃)are 2478 h−1 and 993 min^(−1)for H_(2)and O_(2)evolution,respectively.The highly efficient and selective“on-off”switch for selective H_(2)generation from HCOOH is successfully realized by pH adjustment.This novel and highly efficient nanocatalyst Pd/CNS-800 not only provides new approaches for the promising application of HCOOH and H_(2)O_(2)as economic and safe H_(2)and O_(2)carriers,respectively,for fuel cells,but also promotes the development of“on-off”switch for on-demand H_(2)evolution.展开更多
Lithium-sulfur(Li-S) batteries can provide far higher energy density than currently commercialized lithium ion batteries, but challenges remain before it they are used in practice.One of the challenges is the shuttle ...Lithium-sulfur(Li-S) batteries can provide far higher energy density than currently commercialized lithium ion batteries, but challenges remain before it they are used in practice.One of the challenges is the shuttle effect that originates from soluble intermediates, like lithium polysulfides. To address this issue, we report a novel laminar composite, N,O-carboxymethyl chitosan-reduced graphene oxide(CC-rGO), which is manufactured via the self-assembly of CC onto GO and subsequent reduction of GO under an extreme condition of 1 Pa and-50°C. The synthesized laminar CC-rGO composite is mixed with acetylene black(AB) and coated on a commercial polypropylene(PP) membrane, resulting in a separator(CC-rGO/AB/PP) that can not only completely suppress the polysulfides penetration, but also can accelerate the lithium ion transportation, providing a Li-S battery with excellent cyclic stability and rate capability. As confirmed by theoretic simulations, this unique feature of CC-rGO is attributed to its strong repulsive interaction to polysulfide anions and its benefit for fast lithium ion transportation through the paths paved by the heteroatoms in CC.展开更多
Ni-rich layered oxides are one of the most promising cathode materials for Li-ion batteries due to their high energy density.However,the chemomechanical breakdown and capacity degradation associated with the anisotrop...Ni-rich layered oxides are one of the most promising cathode materials for Li-ion batteries due to their high energy density.However,the chemomechanical breakdown and capacity degradation associated with the anisotropic lattice evolution during lithiation/delithiation hinders its practical application.Herein,by utilizing the in situ environmental transmission electron microscopy(ETEM),we provide a real time nanoscale characterization of high temperature solid-state synthesis of LiNi_(0.8)CO_(0.1)Mn_(0.1)O_(2)(NCM811) cathode,and unprecedentedly reveal the strain/stress formation and morphological evolution mechanism of primary/second ary particles,as well as their influence on electrochemical performance.We show that stress inhomogeneity during solid-state synthesis will lead to both primary/secondary particle pulverization and new grain boundary initiation,which are detrimental to cathode cycling stability and rate performance.Aiming to alleviate this multiscale strain during solid-state synthesis,we introduced a calcination scheme that effectively relieves the stress during the synthesis,thus mitigating the primary/secondary particle crack and the detrimental grain boundaries formation,which in turn improves the cathode structural integrity and Li-ion transport kinetics for long-life and high-rate electrochemical performance.This work remarkably advances the fundamental understanding on mechanochemical properties of transition metal oxide cathode with solid-state synthesis and provides a unified guide for optimization the Ni-rich oxide cathode.展开更多
文摘亲核氧化反应在可持续生产增值化学品中扮演着重要角色。电催化甘油氧化反应作为亲核氧化反应的一种重要类型,可以制得包括甲酸在内的C_(1)至C_(3)衍生产物。非贵金属氢氧化物/羟基氧化物被广泛应用于甘油氧化反应,但在中等电位下难以达到工业级电流密度(大于300 mA·cm^(-2))。研究表明,氢氧化物/羟基氧化物催化的甘油氧化反应通过间接氧化机理进行,即通过电生成的含有亲电吸附氧的羟基氧化物氧化亲核试剂(甘油)。因此,理解甘油氧化反应中电催化剂的演变至关重要。在本文中,通过循环伏安法活化钼酸镍(NiMoO_(4)),开发了一种钼掺杂的羟基氧化镍(Mo-NiOOH)催化剂。通过多种表征方法对Mo-NiOOH进行了系统表征,结果显示,Mo-NiOOH继承了NiMoO_(4)前驱体的纳米片阵列形貌,但Mo含量降低,证明循环伏安法活化后实现了从氧化物到羟基氧化物的相重构。此外,Mo-NiOOH中Ni^(3+)/Ni^(2+)的比例高于循环伏安法活化制备的NiOOH。在活化过程中,Mo物种从NiMoO_(4)中浸出,制备得到的Mo-NiOOH保留了NiMoO_(4)前驱体的纳米片阵列形貌。与氢氧化镍(Ni(OH)_(2))经循环伏安法活化合成的NiOOH相比,Mo-NiOOH具有更高的Ni^(3+)/Ni^(2+)比例以及更高的电化学比表面积(ECSAs),且促进了Ni^(2+)氧化为Ni^(3+)。因此,Mo-NiOOH达到高电流密度(400mA·cm^(-2))的电位(1.51V vs.RHE)低于NiOOH(1.84 V vs.RHE)。此外,Mo-NiOOH表现出高于NiOOH的甲酸盐法拉第效率(84.7%vs.59.6%),表明钼掺杂加速了碳-碳键断裂。多电位阶跃实验显示,NiOOH和Mo-NiOOH催化的甘油电氧化通过类似的羟基氧化物介导的间接氧化机理进行。原位电化学阻抗谱和原位拉曼光谱证实,Mo掺杂促进了甘油氧化反应动力学以及Ni^(2+)氧化为Ni^(3+)的过程,导致Mo-NiOOH比NiOOH具有更高的活性和甲酸选择性。本研究通过可溶性阴离子浸出策略来调节羟基氧化物表面结构,为设计高性能亲核氧化反应电催化剂提供了指导。
基金supported by the National Natural Science Foundation of China(Nos.21972073,22136003,22206188,and 21805166).
文摘Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.
基金National Key Research and Development Program of China (2021YFB3500700)National Natural Science Foundation of China (51802015)Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘In this work,nickel foam supported CeO_(2)-modified CoBDC(BDC stands for terephthalic acid linker)metal-organic frameworks(NF/CoBDC@CeO_(2)) are prepared by hydrothermal and subsequent impregnation methods,which can be further transformed to NF/CoOOH@CeO_(2) by reconstruction during the electrocatalytic test.The obtained NF/CoOOH@CeO_(2) exhibits excellent performance in electrocatalytic oxidation of 5-hydroxymethylfurfural(HMF) because the introduction of CeO_(2) can optimize the electronic structure of the heterointerface and accelerate the accumulation of ^(*)OH.It requires only a potential of 1.290 V_(RHE) to provide a current density of 50 mA cm^(-2) in 1.0 M KOH+50 mM HMF,which is 222 mV lower than that required in 1,0 M KOH(1.512 V_(RHE)).In addition,density-functional theory calculation results demonstrate that CeO_(2) biases the electrons to the CoOOH side at the heterointerface and promotes the adsorption of ^(*)OH and ^(*)HMF on the catalyst surface,which lower the reaction energy barrier and facilitate the electrocata lytic oxidation process.
基金Supported by the National Natural Science Foundation of China(No.82174444)the Chengdu University of Traditional Chinese Medicine Xinglin Scholar Discipline Talent Research Promotion Program Project(No.XKTD2022009)the Inheritance and Communication Department of Science and Technology Innovation Engineering Department of Chinese Academy of Chinese Medical Sciences(No.XJ2023001701).
文摘AIM:To investigate the antioxidant protective effect of Lycium barbarum glycopeptide(LbGP)pretreatment on retinal ischemia-reperfusion(I/R)injury(RIRI)in rats.METHODS:RIRI was induced in Sprague Dawley rats through anterior chamber perfusion,and pretreatment involved administering LbGP via gavage for 7d.After 24h of reperfusion,serum alanine aminotransferase(ALT),aspartate aminotransferase(AST),and creatinine(CREA)levels,retinal structure,expression of Caspase-3 and Caspase-8,superoxide dismutase(SOD)activity,and malondialdehyde(MDA)in the retina were measured.RESULTS:The pretreatment with LbGP effectively protected the retina and retinal tissue from edema and inflammation in the ganglion cell layer(GCL)and nerve fiber layer(NFL)of rats subjected to RIRI,as shown by light microscopy and optical coherence tomography(OCT).Serum AST was higher in the model group than in the blank group(P=0.042),but no difference was found in ALT,AST,and CREA across the LbGP groups and model group.Caspase-3 expression was higher in the model group than in the blank group(P=0.006),but no difference was found among LbGP groups and the model group.Caspase-8 expression was higher in the model group than in the blank group(P=0.000),and lower in the 400 mg/kg LbGP group than in the model group(P=0.016).SOD activity was lower in the model group than in the blank group(P=0.001),and the decrease was slower in the 400 mg/kg LbGP group than in the model group(P=0.003).MDA content was higher in the model group than in the blank group(P=0.001),and lower in the 400 mg/kg LbGP group than in the model group(P=0.016).The pretreatment with LbGP did not result in any observed liver or renal toxicity in the model.CONCLUSION:LbGP pretreatment exhibits dosedependent anti-inflammatory,and antioxidative effects by reducing Caspase-8 expression,preventing declines of SOD activity,and decreasing MDA content in the RIRI rat model.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.62072074,62076054,62027827,62002047)the Sichuan Science and Technology Innovation Platform and Talent Plan(Nos.2020JDJQ0020,2022JDJQ0039)+2 种基金the Sichuan Science and Technology Support Plan(Nos.2020YFSY0010,2022YFQ0045,2022YFS0220,2023YFG0148,2021YFG0131)the YIBIN Science and Technology Support Plan(No.2021CG003)the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China(Nos.ZYGX2021YGLH212,ZYGX2022YGRH012).
文摘With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.
基金open foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanicsthe Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.
基金support from the National Natural Science Foundations of China(Nos.11972267 and 11802214)the Open Foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics and the Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems.
文摘Colorectal cancer(CRC)is a leading global health concern,and early identification and precise prognosis play a vital role in enhancing patient results.Endoscopy is a minimally invasive imaging technique that is crucial for the screening,diagnosis,and treatment of CRC.This editorial discusses the importance of advances in endoscopic techniques,the integration of artificial intelligence,and the potential of novel technologies in enhancing the diagnosis and management of CRC.
基金funded by the Scientific Research Startup Foundation of Fujian University of Technology (GY-Z21067 and GY-Z21026).
文摘In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system.The model integrates the geometric deformations of the track,attributed to settlement,as track irregularities.A novel“cyclic model”algorithm was employed to enhance computational efficiency without compromising on precision,a claim that was rigorously validated.The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas.The research primarily focuses on how settlement wavelength,amplitude,and vehicle speed influence operational performance.Key findings indicate that an increase in settlement wavelength can improve vehicle performance,whereas a rise in amplitude can degrade it.The study also establishes settlement thresholds,based on vehicle operation comfort and safety.These insights are pivotal for maintaining and enhancing the safety and efficiency of subway systems,providing a valuable framework for urban infrastructure management and long-term maintenance strategies in metropolitan transit systems.
基金This study is supported by a Scientific Research Project of Sinopec(Program No.P21087-2)the Open Fund of Key Laboratory of Marine Oil&Gas Reservoirs Production,Sinopec(Grant No.33550000-22-FW2099-0004).
文摘The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale,which affects the fracturing effect.Accordingly,we designed and conducted indoor experiments related to the changes in macro and microscopic characteristics after the interaction of acid with the shale of Wujiaping Formation,based on which the characteristic law of fracture volume modification after acid fracturing was studied using numerical simulation.The results demonstrate that the pores and fractures are enlarged and the structure is significantly loosened after the acid immersion.And a 15%concentration of hydrochloric acid can effectively dissolve shale.Furthermore,the degree of acid-etching reaction is highly variable because of the different carbonate content,which reveals the strong inhomogeneity of the shale system in the Wujiaping Group reservoir section.After the acid interacted with the shale rock samples,the triaxial compressive strength,elastic modulus,and Poisson’s ratio of shale decreased.Moreover,the evaluation of the effect after acid fracturing simulated by fracturing software revealed that the smaller the value of elastic modulus in shale-based reservoirs,the more favorable the fracture volume modification.This discovery not only provides a theoretical basis for the expansion and extension patterns of acid-fracturing in carbonaceous shale formations but also offers research methods and theoretical insights for the fundamental exploration of other deep-seated oil and gas resources.
基金Supported by The Fourth Hospital of Hebei Medical University,No.20210423.
文摘BACKGROUND The consistency of pancreatic apparent diffusion coefficient(ADC)values and intravoxel incoherent motion(IVIM)parameter values across different magnetic resonance imaging(MRI)devices significantly impacts the patient’s diagnosis and treatment.AIM To explore consistency in image quality,ADC values,and IVIM parameter values among different MRI devices in pancreatic examinations.METHODS This retrospective study was approved by the local ethics committee,and informed consent was obtained from all participants.In total,22 healthy volunteers(10 males and 12 females)aged 24-61 years(mean,28.9±2.3 years)underwent pancreatic diffusion-weighted imaging using 3.0T MRI equipment from three vendors.Two independent observers subjectively scored image quality and measured the pancreas’s overall ADC values and signal-to-noise ratios(SNRs).Subsequently,regions of interest(ROIs)were delineated for the IVIM parameters(true diffusion coefficient,pseudo-diffusion coefficient,and perfusion fraction)using post-processing software.These ROIs were on the head,body,and tail of the pancrease.The subjective image ratings were assessed using the kappa consistency test.Intraclass correlation coefficients(ICCs)and mixed linear models were used to evaluate each device’s quantitative parameter values.Finally,a pairwise analysis of IVIM parameter values across each device was performed using Bland-Altman plots.RESULTS The Kappa value for the subjective ratings of the different observers was 0.776(P<0.05).The ICC values for interobserver and intra-observer agreements for the quantitative parameters were 0.803[95% confidence interval(CI):0.684-0.880]and 0.883(95%CI:0.760-0.945),respectively(P<0.05).The ICCs for the SNR between different devices was comparable(P>0.05),and the ICCs for the ADC values from different devices were 0.870,0.707,and 0.808,respectively(P<0.05).Notably,only a few statistically significant inter-device agreements were observed for different IVIM parameters,and among those,the ICC values were generally low.The mixed linear model results indicated differences(P<0.05)in the f-value for the pancreas head,D-value for the pancreas body,and D-value for the pancreas tail obtained using different MRI machines.The Bland-Altman plots showed significant variability at some data points.CONCLUSION ADC values are consistent among different devices,but the IVIM parameters’repeatability is moderate.Therefore,the variability in the IVIM parameter values may be associated with using different MRI machines.Thus,caution should be exercised when using IVIM parameter values to assess the pancreas.
基金supported by the China National Railway Group Corporation Science and Technology Research and Development Program(J2022G009)Dr.Jingjing Li received no grant support.
文摘The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.
基金Shaanxi Province key Research and Development Plan-Listed project(2022-JBGS-07)。
文摘Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization.
文摘Aiming at the prior medical knowledge that hepatic ascites only occurs in the severe period of liver cirrhosis, and the severe rupture of the liver capsule curve, when ascites occurs visually, can easily lead to the wrong location of the liver capsule, a transposed grayscale statistical threshold method is proposed to solve the problem. Realize the identification of liver ascites. By analyzing the visual characteristics of the liver image, the gray value of the upper half of the ultrasound image is counted column by column from a mathematical point of view, the gray distribution curve is drawn, and the relevant threshold is set for corresponding judgment. At the same time, the gray value above the ascites detection boundary is set to zero. The ablation experiment proved that the ascites detection method and post-processing operation proposed in this paper provide effective support for the precise positioning of the liver capsule curve, quantitative analysis and diagnosis of liver cirrhosis in the later stage. The Hessian matrix is sensitive to linear structure to achieve image enhancement. In view of the low accuracy of the existing liver envelope curve detection method and the incomplete quantitative evaluation of liver cirrhosis, it is proposed to use drift iteration under the synergistic effect of multiple filters. A search algorithm extracts the liver capsule.
基金National Natural Science Foundation of China,Grant/Award Number:21805166111 Project of China,Grant/Award Number:D20015+1 种基金Ministryof Education,Hubei province,China,Grant/Award Number:T2020004Foundation of Science and Technology Bureau of Yichang City,Grant/Award Number:A21‐3‐012。
文摘In spite of the numerous advances in the development of H_(2)and O_(2)evolutions upon water splitting,the separation of H_(2)from O_(2)still remains a severe challenge.Herein,the novel dual-functional nanocatalysts Pd/carbon nanosphere(CNS),obtained via immobilization of ultrafine Pd nanoparticles onto CNS,are developed and employed for both selective H_(2)generation from HCOOH dehydrogenation and O_(2)evolution from H_(2)O_(2)decomposition.In these reactions,the highest activities for Pd/CNS-800(i.e.,calcinated at 800℃)are 2478 h−1 and 993 min^(−1)for H_(2)and O_(2)evolution,respectively.The highly efficient and selective“on-off”switch for selective H_(2)generation from HCOOH is successfully realized by pH adjustment.This novel and highly efficient nanocatalyst Pd/CNS-800 not only provides new approaches for the promising application of HCOOH and H_(2)O_(2)as economic and safe H_(2)and O_(2)carriers,respectively,for fuel cells,but also promotes the development of“on-off”switch for on-demand H_(2)evolution.
基金supported by the National Key Research and Development Project (Grant No. 2018YFE0124800)the National Key Research Program of China (Grant No.2022YFA1503100)+7 种基金Science and Technology Project of Jiangsu Province (Grant No. BZ2020011)National Natural Science Foundation of China (Grants No. 22173067)the Science and Technology Development FundMacao SAR(FDCT No. 0052/2021/A)Collaborative Innovation Center of Suzhou Nano Science&Technologythe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices
文摘Lithium-sulfur(Li-S) batteries can provide far higher energy density than currently commercialized lithium ion batteries, but challenges remain before it they are used in practice.One of the challenges is the shuttle effect that originates from soluble intermediates, like lithium polysulfides. To address this issue, we report a novel laminar composite, N,O-carboxymethyl chitosan-reduced graphene oxide(CC-rGO), which is manufactured via the self-assembly of CC onto GO and subsequent reduction of GO under an extreme condition of 1 Pa and-50°C. The synthesized laminar CC-rGO composite is mixed with acetylene black(AB) and coated on a commercial polypropylene(PP) membrane, resulting in a separator(CC-rGO/AB/PP) that can not only completely suppress the polysulfides penetration, but also can accelerate the lithium ion transportation, providing a Li-S battery with excellent cyclic stability and rate capability. As confirmed by theoretic simulations, this unique feature of CC-rGO is attributed to its strong repulsive interaction to polysulfide anions and its benefit for fast lithium ion transportation through the paths paved by the heteroatoms in CC.
基金the funding support from the National Natural Science Foundation of China (Nos. 52022088, 51971245, 51772262, U20A20336, 21935009)the National Key R&D Program of China (No. 2022YFB2404300, 2022YFE0207900)+2 种基金the Natural Science Foundation of Hebei Province (No. F2021203097, B2020203037)the China Postdoctoral Science Foundation (Grant number 2021M702756)the Sichuan Science and Technology Program and Science and Technology Planning Project of Yibin Sanjiang New Area (2022JBGS002, 2022ZYD0125, 23QYCX0034, 2021ZYGY022)。
文摘Ni-rich layered oxides are one of the most promising cathode materials for Li-ion batteries due to their high energy density.However,the chemomechanical breakdown and capacity degradation associated with the anisotropic lattice evolution during lithiation/delithiation hinders its practical application.Herein,by utilizing the in situ environmental transmission electron microscopy(ETEM),we provide a real time nanoscale characterization of high temperature solid-state synthesis of LiNi_(0.8)CO_(0.1)Mn_(0.1)O_(2)(NCM811) cathode,and unprecedentedly reveal the strain/stress formation and morphological evolution mechanism of primary/second ary particles,as well as their influence on electrochemical performance.We show that stress inhomogeneity during solid-state synthesis will lead to both primary/secondary particle pulverization and new grain boundary initiation,which are detrimental to cathode cycling stability and rate performance.Aiming to alleviate this multiscale strain during solid-state synthesis,we introduced a calcination scheme that effectively relieves the stress during the synthesis,thus mitigating the primary/secondary particle crack and the detrimental grain boundaries formation,which in turn improves the cathode structural integrity and Li-ion transport kinetics for long-life and high-rate electrochemical performance.This work remarkably advances the fundamental understanding on mechanochemical properties of transition metal oxide cathode with solid-state synthesis and provides a unified guide for optimization the Ni-rich oxide cathode.