As a renewable and environment-friendly technology for seawater desalination and wastewater purification,solar energy triggered steam generation is attractive to address the long-standing global water scarcity issues....As a renewable and environment-friendly technology for seawater desalination and wastewater purification,solar energy triggered steam generation is attractive to address the long-standing global water scarcity issues.However,practical utilization of solar energy for steam generation is severely restricted by the complex synthesis,low energy conversion efficiency,insufficient solar spectrum absorption and water extraction capability of state-of-the-art technologies.Here,for the first time,we report a facile strategy to realize hydrogen bond induced self-assembly of a polydopamine(PDA)@MXene microsphere photothermal layer for synergistically achieving wide-spectrum and highly efficient solar absorption capability(≈96%in a wide solar spectrum range of 250–1,500 nm wavelength).Moreover,such a system renders fast water transport and vapor escaping due to the intrinsically hydrophilic nature of both MXene and PDA,as well as the interspacing between core-shell microspheres.The solar-to-vapor conversion efficiencies under the solar illumination of 1 sun and 4 sun are as high as 85.2%and 93.6%,respectively.Besides,the PDA@MXene photothermal layer renders the system durable mechanical properties,allowing producing clean water from seawater with the salt rejection rate beyond 99%.Furthermore,stable light absorption performance can be achieved and well maintained due to the formation of ternary TiO2/C/MXene complex caused by oxidative degradation of MXene.Therefore,this work proposes an attractive MXene-assisted strategy for fabricating high performance photothermal composites for advanced solar-driven seawater desalination applications.展开更多
Wearable electronics integrated with stretchable sensors are considered a promising and non-invasive strategy to monitor respiratory status for health assessment.However,long-term and stable monitoring of respiratory ...Wearable electronics integrated with stretchable sensors are considered a promising and non-invasive strategy to monitor respiratory status for health assessment.However,long-term and stable monitoring of respiratory abnormality is still a grand challenge.Here,we report a facile one-step thermal stretching strategy to fabricate an anti-fatigue ionic gel(AIG)sensor with high fatigue threshold(0=1130 J m^(–2)),high stability(>20,000 cycles),high linear sensitivity,and recyclability.A multimodal wearable respiratory monitoring system(WRMS)developed with AIG sensors can continuously measure respiratory abnormality(single-sensor mode)and compliance(multi-sensor mode)by monitoring the movement of the ribcage and abdomen in a long-term manner.For single-sensor mode,the respiratory frequency(Fr),respiratory energy(Er),and inspire/expire time(I/E ratio)can be extracted to evaluate the respiratory status during sitting,sporting,and sleeping.Further,the multi-sensors mode is developed to evaluate patientventilator asynchrony through validated clinical criteria by monitoring the incongruous movement of the chest and abdomen,which shows great potential for both daily home care and clinical applications.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51873126,51422305,and 51721091)。
文摘As a renewable and environment-friendly technology for seawater desalination and wastewater purification,solar energy triggered steam generation is attractive to address the long-standing global water scarcity issues.However,practical utilization of solar energy for steam generation is severely restricted by the complex synthesis,low energy conversion efficiency,insufficient solar spectrum absorption and water extraction capability of state-of-the-art technologies.Here,for the first time,we report a facile strategy to realize hydrogen bond induced self-assembly of a polydopamine(PDA)@MXene microsphere photothermal layer for synergistically achieving wide-spectrum and highly efficient solar absorption capability(≈96%in a wide solar spectrum range of 250–1,500 nm wavelength).Moreover,such a system renders fast water transport and vapor escaping due to the intrinsically hydrophilic nature of both MXene and PDA,as well as the interspacing between core-shell microspheres.The solar-to-vapor conversion efficiencies under the solar illumination of 1 sun and 4 sun are as high as 85.2%and 93.6%,respectively.Besides,the PDA@MXene photothermal layer renders the system durable mechanical properties,allowing producing clean water from seawater with the salt rejection rate beyond 99%.Furthermore,stable light absorption performance can be achieved and well maintained due to the formation of ternary TiO2/C/MXene complex caused by oxidative degradation of MXene.Therefore,this work proposes an attractive MXene-assisted strategy for fabricating high performance photothermal composites for advanced solar-driven seawater desalination applications.
基金supported by the National Natural Science Foundation of China(NNSFC grant No.52125301)the Sichuan Province Science and Technology Department Project(grant No.2021YJ0448)+1 种基金the Post Doctoral Research Fund,West China Hospital,Sichuan University(grant No.2020HXBH181)We thank Shanghai Synchrotron Radiation Facility(SSRF)BL16B1 for providing technological support for SAXS and WAXD characterization。
文摘Wearable electronics integrated with stretchable sensors are considered a promising and non-invasive strategy to monitor respiratory status for health assessment.However,long-term and stable monitoring of respiratory abnormality is still a grand challenge.Here,we report a facile one-step thermal stretching strategy to fabricate an anti-fatigue ionic gel(AIG)sensor with high fatigue threshold(0=1130 J m^(–2)),high stability(>20,000 cycles),high linear sensitivity,and recyclability.A multimodal wearable respiratory monitoring system(WRMS)developed with AIG sensors can continuously measure respiratory abnormality(single-sensor mode)and compliance(multi-sensor mode)by monitoring the movement of the ribcage and abdomen in a long-term manner.For single-sensor mode,the respiratory frequency(Fr),respiratory energy(Er),and inspire/expire time(I/E ratio)can be extracted to evaluate the respiratory status during sitting,sporting,and sleeping.Further,the multi-sensors mode is developed to evaluate patientventilator asynchrony through validated clinical criteria by monitoring the incongruous movement of the chest and abdomen,which shows great potential for both daily home care and clinical applications.