期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
MSC-YOLO:Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View
1
作者 xiangyan tang Chengchun Ruan +2 位作者 Xiulai Li Binbin Li Cebin Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期983-1003,共21页
Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati... Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications. 展开更多
关键词 Small object detection YOLOv7 multi-scale attention spatial context
下载PDF
An Abnormal Network Flow Feature Sequence Prediction Approach for DDoS Attacks Detection in Big Data Environment 被引量:20
2
作者 Jieren Cheng Ruomeng Xu +2 位作者 xiangyan tang Victor S.Sheng Canting Cai 《Computers, Materials & Continua》 SCIE EI 2018年第4期95-119,共25页
Distributed denial-of-service(DDoS)is a rapidly growing problem with the fast development of the Internet.There are multitude DDoS detection approaches,however,three major problems about DDoS attack detection appear i... Distributed denial-of-service(DDoS)is a rapidly growing problem with the fast development of the Internet.There are multitude DDoS detection approaches,however,three major problems about DDoS attack detection appear in the big data environment.Firstly,to shorten the respond time of the DDoS attack detector;secondly,to reduce the required compute resources;lastly,to achieve a high detection rate with low false alarm rate.In the paper,we propose an abnormal network flow feature sequence prediction approach which could fit to be used as a DDoS attack detector in the big data environment and solve aforementioned problems.We define a network flow abnormal index as PDRA with the percentage of old IP addresses,the increment of the new IP addresses,the ratio of new IP addresses to the old IP addresses and average accessing rate of each new IP address.We design an IP address database using sequential storage model which has a constant time complexity.The autoregressive integrated moving average(ARIMA)trending prediction module will be started if and only if the number of continuous PDRA sequence value,which all exceed an PDRA abnormal threshold(PAT),reaches a certain preset threshold.And then calculate the probability that is the percentage of forecasting PDRA sequence value which exceed the PAT.Finally we identify the DDoS attack based on the abnormal probability of the forecasting PDRA sequence.Both theorem and experiment show that the method we proposed can effectively reduce the compute resources consumption,identify DDoS attack at its initial stage with higher detection rate and lower false alarm rate. 展开更多
关键词 DDoS attack time series prediction ARIMA big data
下载PDF
An Improved Method for the Fitting and Prediction of the Number of COVID-19 Confirmed Cases Based on LSTM 被引量:6
3
作者 Bingjie Yan Jun Wang +8 位作者 Zhen Zhang xiangyan tang Yize Zhou Guopeng Zheng Qi Zou Yao Lu Boyi Liu Wenxuan Tu Neal Xiong 《Computers, Materials & Continua》 SCIE EI 2020年第9期1473-1490,共18页
New coronavirus disease(COVID-19)has constituted a global pandemic and has spread to most countries and regions in the world.Through understanding the development trend of confirmed cases in a region,the government ca... New coronavirus disease(COVID-19)has constituted a global pandemic and has spread to most countries and regions in the world.Through understanding the development trend of confirmed cases in a region,the government can control the pandemic by using the corresponding policies.However,the common traditional mathematical differential equations and population prediction models have limitations for time series population prediction,and even have large estimation errors.To address this issue,we propose an improved method for predicting confirmed cases based on LSTM(Long-Short Term Memory)neural network.This work compares the deviation between the experimental results of the improved LSTM prediction model and the digital prediction models(such as Logistic and Hill equations)with the real data as reference.Furthermore,this work uses the goodness of fitting to evaluate the fitting effect of the improvement.Experiments show that the proposed approach has a smaller prediction deviation and a better fitting effect.Compared with the previous forecasting methods,the contributions of our proposed improvement methods are mainly in the following aspects:1)we have fully considered the spatiotemporal characteristics of the data,rather than single standardized data.2)the improved parameter settings and evaluation indicators are more accurate for fitting and forecasting.3)we consider the impact of the epidemic stage and conduct reasonable data processing for different stage. 展开更多
关键词 COVID-19 LSTM model predictive analysis
下载PDF
Novel DDoS Feature Representation Model Combining Deep Belief Network and Canonical Correlation Analysis 被引量:2
4
作者 Chen Zhang Jieren Cheng +3 位作者 xiangyan tang Victor SSheng Zhe Dong Junqi Li 《Computers, Materials & Continua》 SCIE EI 2019年第8期657-675,共19页
Distributed denial of service(DDoS)attacks launch more and more frequently and are more destructive.Feature representation as an important part of DDoS defense technology directly affects the efficiency of defense.Mos... Distributed denial of service(DDoS)attacks launch more and more frequently and are more destructive.Feature representation as an important part of DDoS defense technology directly affects the efficiency of defense.Most DDoS feature extraction methods cannot fully utilize the information of the original data,resulting in the extracted features losing useful features.In this paper,a DDoS feature representation method based on deep belief network(DBN)is proposed.We quantify the original data by the size of the network flows,the distribution of IP addresses and ports,and the diversity of packet sizes of different protocols and train the DBN in an unsupervised manner by these quantified values.Two feedforward neural networks(FFNN)are initialized by the trained deep belief network,and one of the feedforward neural networks continues to be trained in a supervised manner.The canonical correlation analysis(CCA)method is used to fuse the features extracted by two feedforward neural networks per layer.Experiments show that compared with other methods,the proposed method can extract better features. 展开更多
关键词 Deep belief network DDoS feature representation canonical correlation analysis
下载PDF
DDoS Attack Detection via Multi-Scale Convolutional Neural Network 被引量:2
5
作者 Jieren Cheng Yifu Liu +3 位作者 xiangyan tang Victor SSheng Mengyang Li Junqi Li 《Computers, Materials & Continua》 SCIE EI 2020年第3期1317-1333,共17页
Distributed Denial-of-Service(DDoS)has caused great damage to the network in the big data environment.Existing methods are characterized by low computational efficiency,high false alarm rate and high false alarm rate.... Distributed Denial-of-Service(DDoS)has caused great damage to the network in the big data environment.Existing methods are characterized by low computational efficiency,high false alarm rate and high false alarm rate.In this paper,we propose a DDoS attack detection method based on network flow grayscale matrix feature via multi-scale convolutional neural network(CNN).According to the different characteristics of the attack flow and the normal flow in the IP protocol,the seven-tuple is defined to describe the network flow characteristics and converted into a grayscale feature by binary.Based on the network flow grayscale matrix feature(GMF),the convolution kernel of different spatial scales is used to improve the accuracy of feature segmentation,global features and local features of the network flow are extracted.A DDoS attack classifier based on multi-scale convolution neural network is constructed.Experiments show that compared with correlation methods,this method can improve the robustness of the classifier,reduce the false alarm rate and the missing alarm rate. 展开更多
关键词 DDoS attack detection convolutional neural network network flow feature extraction
下载PDF
Forecasting Model Based on Information-Granulated GA-SVR and ARIMA for Producer Price Index 被引量:1
6
作者 xiangyan tang Liang Wang +2 位作者 Jieren Cheng Jing Chen Victor S.Sheng 《Computers, Materials & Continua》 SCIE EI 2019年第2期463-491,共29页
The accuracy of predicting the Producer Price Index(PPI)plays an indispensable role in government economic work.However,it is difficult to forecast the PPI.In our research,we first propose an unprecedented hybrid mode... The accuracy of predicting the Producer Price Index(PPI)plays an indispensable role in government economic work.However,it is difficult to forecast the PPI.In our research,we first propose an unprecedented hybrid model based on fuzzy information granulation that integrates the GA-SVR and ARIMA(Autoregressive Integrated Moving Average Model)models.The fuzzy-information-granulation-based GA-SVR-ARIMA hybrid model is intended to deal with the problem of imprecision in PPI estimation.The proposed model adopts the fuzzy information-granulation algorithm to pre-classification-process monthly training samples of the PPI,and produced three different sequences of fuzzy information granules,whose Support Vector Regression(SVR)machine forecast models were separately established for their Genetic Algorithm(GA)optimization parameters.Finally,the residual errors of the GA-SVR model were rectified through ARIMA modeling,and the PPI estimate was reached.Research shows that the PPI value predicted by this hybrid model is more accurate than that predicted by other models,including ARIMA,GRNN,and GA-SVR,following several comparative experiments.Research also indicates the precision and validation of the PPI prediction of the hybrid model and demonstrates that the model has consistent ability to leverage the forecasting advantage of GA-SVR in non-linear space and of ARIMA in linear space. 展开更多
关键词 Data analysis producer price index fuzzy information granulation ARIMA model support vector model.
下载PDF
A DDoS Attack Information Fusion Method Based on CNN for Multi-Element Data 被引量:1
7
作者 Jieren Cheng Canting Cai +3 位作者 xiangyan tang Victor SSheng Wei Guo Mengyang Li 《Computers, Materials & Continua》 SCIE EI 2020年第4期131-150,共20页
Traditional distributed denial of service(DDoS)detection methods need a lot of computing resource,and many of them which are based on single element have high missing rate and false alarm rate.In order to solve the pr... Traditional distributed denial of service(DDoS)detection methods need a lot of computing resource,and many of them which are based on single element have high missing rate and false alarm rate.In order to solve the problems,this paper proposes a DDoS attack information fusion method based on CNN for multi-element data.Firstly,according to the distribution,concentration and high traffic abruptness of DDoS attacks,this paper defines six features which are respectively obtained from the elements of source IP address,destination IP address,source port,destination port,packet size and the number of IP packets.Then,we propose feature weight calculation algorithm based on principal component analysis to measure the importance of different features in different network environment.The algorithm of weighted multi-element feature fusion proposed in this paper is used to fuse different features,and obtain multi-element fusion feature(MEFF)value.Finally,the DDoS attack information fusion classification model is established by using convolutional neural network and support vector machine respectively based on the MEFF time series.Experimental results show that the information fusion method proposed can effectively fuse multi-element data,reduce the missing rate and total error rate,memory resource consumption,running time,and improve the detection rate. 展开更多
关键词 DDoS attack multi-element data information fusion principal component analysis CNN
下载PDF
Blockchain Security Threats and Collaborative Defense:A Literature Review 被引量:1
8
作者 Xiulai Li Jieren Cheng +5 位作者 Zhaoxin Shi Jingxin Liu Bin Zhang Xinbing Xu xiangyan tang Victor S.Sheng 《Computers, Materials & Continua》 SCIE EI 2023年第9期2597-2629,共33页
As a distributed database,the system security of the blockchain is of great significance to prevent tampering,protect privacy,prevent double spending,and improve credibility.Due to the decentralized and trustless natu... As a distributed database,the system security of the blockchain is of great significance to prevent tampering,protect privacy,prevent double spending,and improve credibility.Due to the decentralized and trustless nature of blockchain,the security defense of the blockchain system has become one of the most important measures.This paper comprehensively reviews the research progress of blockchain security threats and collaborative defense,and we first introduce the overview,classification,and threat assessment process of blockchain security threats.Then,we investigate the research status of single-node defense technology and multi-node collaborative defense technology and summarize the blockchain security evaluation indicators and evaluation methods.Finally,we discuss the challenges of blockchain security and future research directions,such as parallel detection and federated learning.This paper aims to stimulate further research and discussion on blockchain security,providing more reliable security guarantees for the use and development of blockchain technology to face changing threats and challenges through continuous updating and improvement of defense technologies. 展开更多
关键词 Blockchain threat assessment collaborative defense security evaluation
下载PDF
An Improved BPNN Prediction Method Based on Multi-Strategy Sparrow Search Algorithm 被引量:1
9
作者 xiangyan tang Dengfang Feng +3 位作者 KeQiu Li Jingxin Liu Jinyang Song Victor S.Sheng 《Computers, Materials & Continua》 SCIE EI 2023年第2期2789-2802,共14页
Data prediction can improve the science of decision-making by making predictions about what happens in daily life based on natural law trends.Back propagation(BP)neural network is a widely used prediction method.To re... Data prediction can improve the science of decision-making by making predictions about what happens in daily life based on natural law trends.Back propagation(BP)neural network is a widely used prediction method.To reduce its probability of falling into local optimum and improve the prediction accuracy,we propose an improved BP neural network prediction method based on a multi-strategy sparrow search algorithm(MSSA).The weights and thresholds of the BP neural network are optimized using the sparrow search algorithm(SSA).Three strategies are designed to improve the SSA to enhance its optimization-seeking ability,leading to the MSSA-BP prediction model.The MSSA algorithm was tested with nine different types of benchmark functions to verify the optimization performance of the algorithm.Two different datasets were selected for comparison experiments on three groups of models.Under the same conditions,the mean absolute error(MAE),root mean square error(RMSE),andmean absolute percentage error(MAPE)of the prediction results of MSSA-BPwere significantly reduced,and the convergence speed was significantly improved.MSSA-BP can effectively improve the prediction accuracy and has certain application value. 展开更多
关键词 PREDICTION parrow search algorithm back propagation neural network
下载PDF
PoEC: A Cross-Blockchain Consensus Mechanism for Governing Blockchain by Blockchain 被引量:1
10
作者 Jieren Cheng Yuan Zhang +4 位作者 Yuming Yuan Hui Li xiangyan tang Victor S.Sheng Guangjing Hu 《Computers, Materials & Continua》 SCIE EI 2022年第10期1385-1402,共18页
The research on the governing blockchain by blockchain supervision system is an important development trend of blockchain technology.In this system there is a supervisory blockchain managing and governing the supervis... The research on the governing blockchain by blockchain supervision system is an important development trend of blockchain technology.In this system there is a supervisory blockchain managing and governing the supervised blockchain based on blockchain technology,results in a uniquely cross-blockchain demand to consensus mechanism for solving the trust problem between supervisory blockchain and supervised blockchain.To solve this problem,this paper proposes a cross-blockchain consensus mechanism based on smart contract and a set of smart contracts endorse the crossblockchain consensus.New consensus mechanism called Proof-of-EndorseContracts(PoEC)consensus,which firstly transfers the consensus reached in supervisory blockchain to supervised blockchain by supervisory nodes,then packages the supervisory block in supervisory blockchain and transmits it to the smart contract deployed in the supervised blockchain,finally miners in supervised blockchain will execute and package the new block according to the status of the smart contract.The core part of the consensus mechanism is Endorse Contracts which designed and implemented by us and verified the effectiveness through experiments.PoEC consensus mechanism and Endorse Contracts support the supervised blockchain to join the governing blockchain by blockchain system without changing the original consensus mechanism,which has the advantages of low cost,high scalability and being able to crossblockchain.This paper proves that our method can provide a feasible crossblockchain governance scheme for the field of blockchain governance. 展开更多
关键词 Proof-of-endorse-contracts PoEC cross-blockchain consensus mechanism governing blockchain by blockchain
下载PDF
A Modified PointNet-Based DDoS Attack Classification and Segmentation in Blockchain 被引量:1
11
作者 Jieren Cheng Xiulai Li +2 位作者 Xinbing Xu xiangyan tang Victor S.Sheng 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期975-992,共18页
With the rapid development of blockchain technology,the number of distributed applications continues to increase,so ensuring the security of the network has become particularly important.However,due to its decentraliz... With the rapid development of blockchain technology,the number of distributed applications continues to increase,so ensuring the security of the network has become particularly important.However,due to its decentralized,decentralized nature,blockchain networks are vulnerable to distributed denial-of-service(DDoS)attacks,which can lead to service stops,causing serious economic losses and social impacts.The research questions in this paper mainly include two aspects:first,the classification of DDoS,which refers to detecting whether blockchain nodes are suffering DDoS attacks,that is,detecting the data of nodes in parallel;The second is the problem of DDoS segmentation,that is,multiple pieces of data that appear at the same time are determined which type of DDoS attack they belong to.In order to solve these problems,this paper proposes a modified PointNet(MPointNet)for the classification and type segmentation of DDoS attacks.A dataset containing multiple DDoS attack types was constructed using the CIC-DDoS2019 dataset,and trained,validated,and tested accordingly.The results show that the proposed DDoS attack classification method has high performance and can be used for the actual blockchain security maintenance process.The accuracy rate of classification tasks reached 99.65%,and the accuracy of type segmentation tasks reached 85.47%.Therefore,the method proposed in this paper has high application value in detecting the classification and segmentation of DDoS attacks. 展开更多
关键词 Blockchain DDOS PointNet classification and segmentation
下载PDF
An Adaptive DDoS Detection and Classification Method in Blockchain Using an Integrated Multi-Models
12
作者 Xiulai Li Jieren Cheng +3 位作者 Chengchun Ruan Bin Zhang xiangyan tang Mengzhe Sun 《Computers, Materials & Continua》 SCIE EI 2023年第12期3265-3288,共24页
With the rising adoption of blockchain technology due to its decentralized,secure,and transparent features,ensuring its resilience against network threats,especially Distributed Denial of Service(DDoS)attacks,is cruci... With the rising adoption of blockchain technology due to its decentralized,secure,and transparent features,ensuring its resilience against network threats,especially Distributed Denial of Service(DDoS)attacks,is crucial.This research addresses the vulnerability of blockchain systems to DDoS assaults,which undermine their core decentralized characteristics,posing threats to their security and reliability.We have devised a novel adaptive integration technique for the detection and identification of varied DDoS attacks.To ensure the robustness and validity of our approach,a dataset amalgamating multiple DDoS attacks was derived from the CIC-DDoS2019 dataset.Using this,our methodology was applied to detect DDoS threats and further classify them into seven unique attack subcategories.To cope with the broad spectrum of DDoS attack variations,a holistic framework has been pro-posed that seamlessly integrates five machine learning models:Gate Recurrent Unit(GRU),Convolutional Neural Networks(CNN),Long-Short Term Memory(LSTM),Deep Neural Networks(DNN),and Support Vector Machine(SVM).The innovative aspect of our framework is the introduction of a dynamic weight adjustment mechanism,enhancing the system’s adaptability.Experimental results substantiate the superiority of our ensemble method in comparison to singular models across various evaluation metrics.The framework displayed remarkable accuracy,with rates reaching 99.71%for detection and 87.62%for classification tasks.By developing a comprehensive and adaptive methodology,this study paves the way for strengthening the defense mechanisms of blockchain systems against DDoS attacks.The ensemble approach,combined with the dynamic weight adjustment,offers promise in ensuring blockchain’s enduring security and trustworthiness. 展开更多
关键词 Blockchain DDOS multi-models adaptive detection
下载PDF
A Novel DDoS Attack Detection Method Using Optimized Generalized Multiple Kernel Learning
13
作者 Jieren Cheng Junqi Li +3 位作者 xiangyan tang Victor SSheng Chen Zhang Mengyang Li 《Computers, Materials & Continua》 SCIE EI 2020年第3期1423-1443,共21页
Distributed Denial of Service(DDoS)attack has become one of the most destructive network attacks which can pose a mortal threat to Internet security.Existing detection methods cannot effectively detect early attacks.I... Distributed Denial of Service(DDoS)attack has become one of the most destructive network attacks which can pose a mortal threat to Internet security.Existing detection methods cannot effectively detect early attacks.In this paper,we propose a detection method of DDoS attacks based on generalized multiple kernel learning(GMKL)combining with the constructed parameter R.The super-fusion feature value(SFV)and comprehensive degree of feature(CDF)are defined to describe the characteristic of attack flow and normal flow.A method for calculating R based on SFV and CDF is proposed to select the combination of kernel function and regularization paradigm.A DDoS attack detection classifier is generated by using the trained GMKL model with R parameter.The experimental results show that kernel function and regularization parameter selection method based on R parameter reduce the randomness of parameter selection and the error of model detection,and the proposed method can effectively detect DDoS attacks in complex environments with higher detection rate and lower error rate. 展开更多
关键词 DDoS attack detection GMKL parameter optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部