Background: Pericardial effusion may progress to cardiac tamponade when pressure around the heart increases to a level comparable to that of the right and left atria. Patients with cardiac tamponade need timely comple...Background: Pericardial effusion may progress to cardiac tamponade when pressure around the heart increases to a level comparable to that of the right and left atria. Patients with cardiac tamponade need timely completion of emergency pericardiocentesis to relieve the threat to the patient’s life, and to save valuable time for patients who need emergency thoracotomy and pericardial window drainage. Pericardiocentesis is a necessary clinical skill for residents in standardized training. In addition, nurses who are familiar with this technology can better assist clinicians to perform this operation. In order to make the medical staff quickly master the theoretical knowledge of emergency pericardiocentesis, we designed a “1 + 1 + 1” teaching method for the theoretical teaching of emergency pericardiocentesis. Objective: This study aims to explore the effectiveness of the “1 + 1 + 1” teaching method in the theoretical teaching of emergency pericardiocentesis. Methods: We used an English teaching video of emergency pericardiocentesis and applied the “1 + 1 + 1” teaching method for theoretical teaching. A questionnaire survey was conducted before and after the lecture among 19 medical staff of different years of service to understand their mastery of the theoretical content of emergency pericardiocentesis before and after the lecture. According to the years of service, the medical staff were divided into three groups: 1 - 3 years (Group A), 4 - 10 years (Group B), and over 10 years (Group C), and the changes in the mastery of various contents by the overall medical staff and each group were statistically analyzed. Results: Before the lecture, the number of people who mastered the indications, contraindications, most commonly used methods, and common complications of emergency pericardiocentesis were 15, 12, 16, and 17, respectively, whereas after the lecture, these numbers increased to 17, 19, 19, and 19, respectively. The overall mastery before and after the lecture was statistically significant (p Conclusion: The “1 + 1 + 1” teaching method can effectively improve the overall mastery level of medical staff’s theoretical knowledge of emergency pericardiocentesis, especially in improving the mastery of contraindications of this operation.展开更多
Objective: This study aims to evaluate the efficacy and safety of using a strip-shaped cymba conchae orthosis for the nonsurgical correction of complex auricular deformities. Methods: Clinical data were collected from...Objective: This study aims to evaluate the efficacy and safety of using a strip-shaped cymba conchae orthosis for the nonsurgical correction of complex auricular deformities. Methods: Clinical data were collected from 2020 to 2021 for 6 patients who underwent correction using a stripshaped cymba conchae orthosis. The indications, corrective effects, and complications associated with use of the orthosis were analyzed. Results: There were four indications for treatment: cryptotia with helix adhesion;cryptotia with grade I microtia;cryptotia with excessive helix thickness;and auricular deformity beyond the treatment time window(≥6 months). Excellent corrective effects were observed in all 6 patients. Complications occurred in one patient, who recovered after symptomatic treatment. Conclusion: The use of a strip-shaped cymba conchae orthosis alone or combined with a U-shaped helix orthosis presents a feasible approach for correcting complex auricular deformities or deformities beyond the treatment time window in pediatric patients.展开更多
There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimen...There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimensional(3D)forms to reduce their weight while maintaining high mechanical properties.A popular strategy for the preparation of 3D inorganic materials is to mold the organic–inorganic hybrid photoresists into 3D micro-and nano-structures and remove the organic components by subsequent sintering.However,due to the discrete arrangement of inorganic components in the organic-inorganic hybrid photoresists,it remains a huge challenge to attain isotropic shrinkage during sintering.Herein,we demonstrate the isotropic sintering shrinkage by forming the consecutive–Si–O–Si–O–Zr–O–inorganic backbone in photoresists and fabricating 3D glass–ceramic nanolattices with enhanced mechanical properties.The femtosecond(fs)laser is used in two-photon polymerization(TPP)to fabricate 3D green body structures.After subsequent sintering at 1000℃,high-quality 3D glass–ceramic microstructures can be obtained with perfectly intact and smooth morphology.In-suit compression experiments and finite-element simulations reveal that octahedral-truss(oct-truss)lattices possess remarkable adeptness in bearing stress concentration and maintain the structural integrity to resist rod bending,indicating that this structure is a candidate for preparing lightweight and high stiffness glass–ceramic nanolattices.3D printing of such glasses and ceramics has significant implications in a number of industrial applications,including metamaterials,microelectromechanical systems,photonic crystals,and damage-tolerant lightweight materials.展开更多
This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimati...This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.展开更多
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables...The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.展开更多
Single-atom(SA)catalysts with nearly 100%atom utilization have been widely employed in electrolysis for decades,due to the outperforming catalytic activity and selectivity.However,most of the reported SA catalysts are...Single-atom(SA)catalysts with nearly 100%atom utilization have been widely employed in electrolysis for decades,due to the outperforming catalytic activity and selectivity.However,most of the reported SA catalysts are fixed through the strong bonding between the dispersed single metallic atoms with nonmetallic atoms of the substrates,which greatly limits the controllable regulation of electrocatalytic activity of SA catalysts.In this work,Pt-Ni bonded Pt SA catalyst with adjustable electronic states was successfully constructed through a controllable electrochemical reduction on the coordination unsaturated amorphous Ni(OH)_(2)nanosheet arrays.Based on the X-ray absorption fine structure analysis and first-principles calculations,Pt SA was bonded with Ni sites of amorphous Ni(OH)_(2),rather than conventional O sites,resulting in negatively charged Pt^(δ-).In situ Raman spectroscopy revealed that the changed configuration and electronic states greatly enhanced absorbability for activated hydrogen atoms,which were the essential intermediate for alkaline hydrogen evolution reaction.The hydrogen spillover process was revealed from amorphous Ni(OH)_(2)that effectively cleave the H-O-H bond of H_(2)O and produce H atom to the Pt SA sites,leading to a low overpotential of 48 mV in alkaline electrolyte at-1000 mA cm^(-2)mg^(-1)_(Pt),evidently better than commercial Pt/C catalysts.This work provided new strategy for the control-lable modulation of the local structure of SA catalysts and the systematic regulation of the electronic states.展开更多
The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended ...The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.展开更多
Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising f...Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials.However,the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity,thus cannot be directly utilized for TE applications.Here,a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated.Under optimal conditions,the electrical conductivity of the treated film is increased to 803.1 S cm^(-1)from 1.2 S cm^(-1)around three order of magnitude higher,and the power factor is improved to 19.0μW m^(-1)K^(-2),which is enhanced more than 200 times.The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation,reduction of the interplanar stacking distance,and the removal of insulating PSS with increasing the oxidation level of PEDOT,facilitating the charge transportation.This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices.展开更多
Congenital melanocytic nevi(CMN) are common skin tumors. Large and specially located nevi cannot be completely removed by surgery, posing the risks of both cosmetic deformities and potential malignancy.Nonsurgical tre...Congenital melanocytic nevi(CMN) are common skin tumors. Large and specially located nevi cannot be completely removed by surgery, posing the risks of both cosmetic deformities and potential malignancy.Nonsurgical treatments, such as laser therapy and physical dermabrasion, can overcome the limitations of surgery;however, the high rate of repigmentation remains an unresolved global challenge. We conducted a self-controlled observational study of a patient with a nevus on the chest. Two areas of the lesion were treated with an Er:YAG laser and 5% imiquimod cream was applied to one of these areas. After nearly 7-months of follow-up, we observed a significant difference in color between the two areas, suggesting that topical imiquimod may inhibit repigmentation and significantly enhance the effectiveness of laser treatment.展开更多
Carrying out green energy transformation,implementing clean energy power replacement and supply,and developing a new power system are some primary driving forces needed to fulfill China’s carbon-peak and carbon-neutr...Carrying out green energy transformation,implementing clean energy power replacement and supply,and developing a new power system are some primary driving forces needed to fulfill China’s carbon-peak and carbon-neutral strategic goals.The construction of new power systems in China’s provinces and cities is developing rapidly,and the lack of a typical model promotes the application.The new power system path design should be based on the actual development of the power grid in different regions,energy use characteristics,and other actual needs to carry out the differentiated path design.In this context,this study analyzes the characteristics of the new domestic power system based on the policy background of the new domestic power system,constructs a new model for power system development stage identification,and proposes the overall design of the new power system development path from the power supply,transmission and distribution,and load sides.It also uses the Hebei South Network as an example to explore the development stage of the Hebei South Grid based on actual development needs.Finally,this study designs a novel power system development path for the entire supply and demand chain for the Hebei South Grid to propose ideas for constructing a new power system in China and to help green energy transformation.展开更多
Peanut(Arachis hypogaea L.)is an oil and economic crop of vital importance,and peanut pod is the key organ influencing the yield and processing quality.Hence,the Pod-related traits(PRTs)are considered as important agr...Peanut(Arachis hypogaea L.)is an oil and economic crop of vital importance,and peanut pod is the key organ influencing the yield and processing quality.Hence,the Pod-related traits(PRTs)are considered as important agronomic traits in peanut breeding.To broaden the variability of PRTs in current peanut germplasms,three elite peanut cultivars were used to construct Ethyl methane sulfonate(EMS)-induced mutant libraries in this study.The optimal EMS treatment conditions for the three peanut varieties were determined.It was found that the median lethal dose(LD50)of EMS treatment varied greatly among different genotypes.Finally,the EMS-induced peanut mutant libraries were constructed and a total of 124 mutant lines for PRTs were identified and evaluated.Furthermore,“M-8070”,one of the mutant lines for pod constriction,was re-sequenced via high-throughput sequencing technology.The genome-wide variations between“M-8070”and its wild parent“Fuhua 8”(FH 8)were detected.2994 EMS-induced single nucleotide polymorphisms(SNPs)and 1188 insertion-deletions(InDels)between“M-8070”and its wild parent were identified.The predominant SNP mutation type was C/G to T/A transitions,while the predominant InDel mutation type was“1-bp”.We analyzed the distribution of identified mutations and annotated their functions.Most of the mutations(91.68%of the SNPs and 77.69%of the InDels)were located in the intergenic region.72 SNPs were identified in the exonic region,leading to 27 synonymous,43 nonsynonymous and 2 stop-gain variation for gene structure.13 Indels were identified in the exonic region,leading to 4 frame-shift,8 non-frame-shift and 1 stop-gain variations of genes.These mutations may lead to the phenotypic variation of“M-8070”.Our study provided valuable resources for peanut improvement and functional genomic research.展开更多
While the internet skills of the elderly is no longer a big problem,it is still necessary to further improve the online shopping experience and activity of the elderly.Evidently,the frequency of seniors shopping onlin...While the internet skills of the elderly is no longer a big problem,it is still necessary to further improve the online shopping experience and activity of the elderly.Evidently,the frequency of seniors shopping online is not nearly as high as the younger generation,as the elderly online shopping frequency is still calculated by weeks.People with higher education and younger age are more likely to accept technology products and understand how to use them,but people with lower education and older age will find it harder to use technology product.The majority of the elderly have a vision for the further development of technology to help them.This study shows that the elderly group shopping demand is large,but when the majority of the elderly choose offline consumption,the option of just a simple online solution is insufficient.Some shopping apps have made improvements in such aspects as font enlargement,color contrast enhancement and simplified operation steps.However,these improvements only solved the superficial problems,and failed to consider and solve the problems based on the experience of the elderly.展开更多
In cryopreservation,the addition of cryoprotectant can change the intra-and extra-cellular osmotic pressure,affect the cell morphology,and induce blebs on the plasma membrane.In this study,the blebs of cells microenca...In cryopreservation,the addition of cryoprotectant can change the intra-and extra-cellular osmotic pressure,affect the cell morphology,and induce blebs on the plasma membrane.In this study,the blebs of cells microencapsulated in the alginate microsphere induced by osmotic shock were studied,and the effects of microencapsulation on bleb size and cell viability were determined.Firstly,a coaxial co-flow focusing device was applied to generate cell-laden microcapsules using alginate hydrogel in this paper.Then,cellular blebs induced by DMSO with various concentrations under microencapsulation were compared with that when non-encapsulated,and the dynamic process of cellular bleb was investigated.Finally,the qualitative relationship between bleb size and cell viability in the presence of DMSO was built,and thus the effects of microencapsulation on bleb size and viability were evaluated.The results show that the bleb size is smaller and the cell viability is higher,and cell microencapsulation can significantly inhibit the excessively large blebs generated on the cell membrane and reduce the osmotic damage to cells when loading cryoprotectant and then to improve cell viability during cryopreservation.This work can provide insights for optimizing cryoprotectant-loading protocols,offer a new avenue to study cell blebbing,and advance future research on cryopreservation of rare cells and biomaterials.展开更多
A comprehensive performance evaluation method for the tunnel boring machine(TBM)cutterhead is proposed in this paper.The evaluation system is established on strength and vibration.Based on fracture mechanics theory,fa...A comprehensive performance evaluation method for the tunnel boring machine(TBM)cutterhead is proposed in this paper.The evaluation system is established on strength and vibration.Based on fracture mechanics theory,fatigue strength evaluation indices are determined under critical crack length.The concept of crack regions division is proposed to evaluate fatigue strength more accurately and specifically.In addition,the velocities in three directions of critical locations are obtained with dynamics equations.Then,the root-mean-square values of velocities are taken as the vibration severity indices.Taking the cutterhead of Jilin diversion engineering as an example,the evaluations of each index are completed;then,the vibration of the TBM cutterhead is measured and compared with the theoretical calculation results.There are similar change laws between the theoretical calculation results and the testing results of the cutterhead acceleration,which proves that the method of calculation of the vibration index is effective,the reliability of the cutter saddle welding should be paid attention to when the TBM is working,and the condition of vibration severity of the TBM cutterhead meets the requirements but needs to be improved.展开更多
A charge transfer complex(CTC)-enabled photoreduction of ether phosphonium salts for the generation of oxyalkyl radicals was described.The photoreduction provides a convenient method to achieve selective oxyalkylation...A charge transfer complex(CTC)-enabled photoreduction of ether phosphonium salts for the generation of oxyalkyl radicals was described.The photoreduction provides a convenient method to achieve selective oxyalkylation of enamides with broad substrate scope.The method features operational simplicity,mild and inherent green conditions.展开更多
Alkali stress is a major constraint for crop production in many regions of saline-alkali land.However,little is known about the mechanisms through which wheat responds to alkali stress.In this study,we identified a ca...Alkali stress is a major constraint for crop production in many regions of saline-alkali land.However,little is known about the mechanisms through which wheat responds to alkali stress.In this study,we identified a calcium ion-binding protein from wheat,TaCCD1,which is critical for regulating the plasma membrane(PM)H^(+)-ATPase-mediated alkali stress response.PM H+-ATPase activity is closely related to alkali tolerance in the wheat variety Shanrong 4(SR4).We found that two D-clade type 2C protein phosphatases,TaPP2C.D1 and TaPP2C.D8(TaPP2C.D1/8),negatively modulate alkali stress tolerance by dephosphorylating the penultimate threonine residue(Thr926)of TaHA2 and thereby inhibiting PM H+-ATPase activity.Alkali stress induces the expression of TaCCD1 in SR4,and TaCCD1 interacts with TaSAUR215,an early auxin-responsive protein.These responses are both dependent on calcium signaling triggered by alkali stress.TaCCD1 enhances the inhibitory effect of TaSAUR215 on TaPP2C.D1/8 activity,thereby promoting the activity of the PM H^(+)-ATPase TaHA2 and alkali stress tolerance in wheat.Functional and genetic analyses verified the effects of these genes in response to alkali stress,indicating that TaPP2C.D1/8 function downstream of TaSAUR215 and TaCCD1.Collectively,this study uncovers a new signaling pathway that regulates wheat responses to alkali stress,in which Ca^(2+)-dependent TaCCD1 cooperates with TaSAUR215 to enhance PM H+-ATPase activity and alkali stress tolerance by inhibiting TaPP2C.D1/8-mediated dephosphorylation of PM H+-ATPase TaHA2 in wheat.展开更多
We report the Lewis acid catalysis of aryldiazonium salts,and their Lewis acidity applications in photogeneration of aryl radicals under additive-,photocatalyst-and transition metal-free conditions.In this visible lig...We report the Lewis acid catalysis of aryldiazonium salts,and their Lewis acidity applications in photogeneration of aryl radicals under additive-,photocatalyst-and transition metal-free conditions.In this visible light-mediated transformation,the Lewis acidic character of aryldiazonium salts enables access to the photoactive charge transfer complex with dichalcogenides.The usefulness and versatility of this new protocol are demonstrated through the chalcogenation of a variety of aryldiazonium salts.展开更多
Photoredox-catalyzed hydrodifluoromethylation of alkenes has become an effective method to introduce difluoromethyl group into organic molecules.As the reported methods involve either photocatalysts or superstoichiome...Photoredox-catalyzed hydrodifluoromethylation of alkenes has become an effective method to introduce difluoromethyl group into organic molecules.As the reported methods involve either photocatalysts or superstoichiometric amounts of additives,we herein describe a simple alternative without using photocatalyst or additive for the hydrodifluoromethylation of alkenes,through photoactivation of difluoromethyltriphenylphosphonium iodide salt.Mechanistic studies shed light on how the transformation takes place.展开更多
As an emerging strategy in antitumor therapy,photodynamic therapy(PDT)has garnered significant attention in recent years for the treatment of various malignant tumors.This is due to its low side effects,superior spati...As an emerging strategy in antitumor therapy,photodynamic therapy(PDT)has garnered significant attention in recent years for the treatment of various malignant tumors.This is due to its low side effects,superior spatial selectivity,and maximum preservation of normal tissue function.However,the hypoxic nature of tumors,continuous oxygen consumption,and microvascular damage associated with PDT treatment have impeded its development.Therefore,the focus of antitumor therapy has shifted towards enhancing the efficacy of PDT by addressing tumor hypoxia.The objective of this review is to assess and summarize the recent advancements in tumor treatment using synergistic therapy strategies(PDT+X,where X represents photothermal therapy,chemodynamic therapy,chemotherapy,immunotherapy,Photoacoustic therapy,etc.)that overcome hypoxia.Additionally,this review aims to outline the advantages and disadvantages of various collaborative methods for improving tumor hypoxia,while also discussing the challenges that lie ahead for future research.展开更多
文摘Background: Pericardial effusion may progress to cardiac tamponade when pressure around the heart increases to a level comparable to that of the right and left atria. Patients with cardiac tamponade need timely completion of emergency pericardiocentesis to relieve the threat to the patient’s life, and to save valuable time for patients who need emergency thoracotomy and pericardial window drainage. Pericardiocentesis is a necessary clinical skill for residents in standardized training. In addition, nurses who are familiar with this technology can better assist clinicians to perform this operation. In order to make the medical staff quickly master the theoretical knowledge of emergency pericardiocentesis, we designed a “1 + 1 + 1” teaching method for the theoretical teaching of emergency pericardiocentesis. Objective: This study aims to explore the effectiveness of the “1 + 1 + 1” teaching method in the theoretical teaching of emergency pericardiocentesis. Methods: We used an English teaching video of emergency pericardiocentesis and applied the “1 + 1 + 1” teaching method for theoretical teaching. A questionnaire survey was conducted before and after the lecture among 19 medical staff of different years of service to understand their mastery of the theoretical content of emergency pericardiocentesis before and after the lecture. According to the years of service, the medical staff were divided into three groups: 1 - 3 years (Group A), 4 - 10 years (Group B), and over 10 years (Group C), and the changes in the mastery of various contents by the overall medical staff and each group were statistically analyzed. Results: Before the lecture, the number of people who mastered the indications, contraindications, most commonly used methods, and common complications of emergency pericardiocentesis were 15, 12, 16, and 17, respectively, whereas after the lecture, these numbers increased to 17, 19, 19, and 19, respectively. The overall mastery before and after the lecture was statistically significant (p Conclusion: The “1 + 1 + 1” teaching method can effectively improve the overall mastery level of medical staff’s theoretical knowledge of emergency pericardiocentesis, especially in improving the mastery of contraindications of this operation.
文摘Objective: This study aims to evaluate the efficacy and safety of using a strip-shaped cymba conchae orthosis for the nonsurgical correction of complex auricular deformities. Methods: Clinical data were collected from 2020 to 2021 for 6 patients who underwent correction using a stripshaped cymba conchae orthosis. The indications, corrective effects, and complications associated with use of the orthosis were analyzed. Results: There were four indications for treatment: cryptotia with helix adhesion;cryptotia with grade I microtia;cryptotia with excessive helix thickness;and auricular deformity beyond the treatment time window(≥6 months). Excellent corrective effects were observed in all 6 patients. Complications occurred in one patient, who recovered after symptomatic treatment. Conclusion: The use of a strip-shaped cymba conchae orthosis alone or combined with a U-shaped helix orthosis presents a feasible approach for correcting complex auricular deformities or deformities beyond the treatment time window in pediatric patients.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021JJLH0058)the Guangdong Basic and Applied Basic Research Foundation(2021B1515120041)。
文摘There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimensional(3D)forms to reduce their weight while maintaining high mechanical properties.A popular strategy for the preparation of 3D inorganic materials is to mold the organic–inorganic hybrid photoresists into 3D micro-and nano-structures and remove the organic components by subsequent sintering.However,due to the discrete arrangement of inorganic components in the organic-inorganic hybrid photoresists,it remains a huge challenge to attain isotropic shrinkage during sintering.Herein,we demonstrate the isotropic sintering shrinkage by forming the consecutive–Si–O–Si–O–Zr–O–inorganic backbone in photoresists and fabricating 3D glass–ceramic nanolattices with enhanced mechanical properties.The femtosecond(fs)laser is used in two-photon polymerization(TPP)to fabricate 3D green body structures.After subsequent sintering at 1000℃,high-quality 3D glass–ceramic microstructures can be obtained with perfectly intact and smooth morphology.In-suit compression experiments and finite-element simulations reveal that octahedral-truss(oct-truss)lattices possess remarkable adeptness in bearing stress concentration and maintain the structural integrity to resist rod bending,indicating that this structure is a candidate for preparing lightweight and high stiffness glass–ceramic nanolattices.3D printing of such glasses and ceramics has significant implications in a number of industrial applications,including metamaterials,microelectromechanical systems,photonic crystals,and damage-tolerant lightweight materials.
基金supported in part by the National Natural Science Foundation of China(62073189,62173207)the Taishan Scholar Project of Shandong Province(tsqn202211129)。
文摘This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.
基金the National Natural Science Foundation of China for Excellent Young Scholar(Grant No.52322313)National Key R&D Project from Minister of Science and Technology(2021YFA1201601)+6 种基金National Science Fund of China(62174014)Beijing Nova program(Z201100006820063)Youth Innovation Promotion Association CAS(2021165)Innovation Project of Ocean Science and Technology(22-3-3-hygg-18-hy)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KFZD202202)Fundamental Research Funds for the Central Universities(292022000337)Young Top-Notch Talents Program of Beijing Excellent Talents Funding(2017000021223ZK03).
文摘The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.
基金supported by National Natural Science Foundation of China(52373221,U1910208,52250119)the National Key R&D Program of China(2020YFA0710403)the Scientific Research Fund of Hunan Provincial Education Department(NO.23B0114).
文摘Single-atom(SA)catalysts with nearly 100%atom utilization have been widely employed in electrolysis for decades,due to the outperforming catalytic activity and selectivity.However,most of the reported SA catalysts are fixed through the strong bonding between the dispersed single metallic atoms with nonmetallic atoms of the substrates,which greatly limits the controllable regulation of electrocatalytic activity of SA catalysts.In this work,Pt-Ni bonded Pt SA catalyst with adjustable electronic states was successfully constructed through a controllable electrochemical reduction on the coordination unsaturated amorphous Ni(OH)_(2)nanosheet arrays.Based on the X-ray absorption fine structure analysis and first-principles calculations,Pt SA was bonded with Ni sites of amorphous Ni(OH)_(2),rather than conventional O sites,resulting in negatively charged Pt^(δ-).In situ Raman spectroscopy revealed that the changed configuration and electronic states greatly enhanced absorbability for activated hydrogen atoms,which were the essential intermediate for alkaline hydrogen evolution reaction.The hydrogen spillover process was revealed from amorphous Ni(OH)_(2)that effectively cleave the H-O-H bond of H_(2)O and produce H atom to the Pt SA sites,leading to a low overpotential of 48 mV in alkaline electrolyte at-1000 mA cm^(-2)mg^(-1)_(Pt),evidently better than commercial Pt/C catalysts.This work provided new strategy for the control-lable modulation of the local structure of SA catalysts and the systematic regulation of the electronic states.
基金financially supported by Joint Foundation of Ministry of Education of China(No.8091B022225)National Natural Science Foundation of China(No.52173078)。
文摘The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110250,2021B1515120041)+1 种基金the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-005)the Fundamental Research Funds for the Central Universities(2020IVA068,2021lll007JC)
文摘Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials.However,the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity,thus cannot be directly utilized for TE applications.Here,a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated.Under optimal conditions,the electrical conductivity of the treated film is increased to 803.1 S cm^(-1)from 1.2 S cm^(-1)around three order of magnitude higher,and the power factor is improved to 19.0μW m^(-1)K^(-2),which is enhanced more than 200 times.The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation,reduction of the interplanar stacking distance,and the removal of insulating PSS with increasing the oxidation level of PEDOT,facilitating the charge transportation.This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices.
基金supported by Shanghai Municipal Key Clinical Specialty (grant no. shslczdzk00901)Clinical Research Project of Multi-Disciplinary Team, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
文摘Congenital melanocytic nevi(CMN) are common skin tumors. Large and specially located nevi cannot be completely removed by surgery, posing the risks of both cosmetic deformities and potential malignancy.Nonsurgical treatments, such as laser therapy and physical dermabrasion, can overcome the limitations of surgery;however, the high rate of repigmentation remains an unresolved global challenge. We conducted a self-controlled observational study of a patient with a nevus on the chest. Two areas of the lesion were treated with an Er:YAG laser and 5% imiquimod cream was applied to one of these areas. After nearly 7-months of follow-up, we observed a significant difference in color between the two areas, suggesting that topical imiquimod may inhibit repigmentation and significantly enhance the effectiveness of laser treatment.
基金funded by the State Grid Hebei Electric Power Co.,Ltd projectthe National Natural Science Foundation of China’s major project,“Research on the Construction of China’s Economic Transformation Mode for Carbon Neutrality(72140001)This study is titled“Research on Novel Power System Development Path”。
文摘Carrying out green energy transformation,implementing clean energy power replacement and supply,and developing a new power system are some primary driving forces needed to fulfill China’s carbon-peak and carbon-neutral strategic goals.The construction of new power systems in China’s provinces and cities is developing rapidly,and the lack of a typical model promotes the application.The new power system path design should be based on the actual development of the power grid in different regions,energy use characteristics,and other actual needs to carry out the differentiated path design.In this context,this study analyzes the characteristics of the new domestic power system based on the policy background of the new domestic power system,constructs a new model for power system development stage identification,and proposes the overall design of the new power system development path from the power supply,transmission and distribution,and load sides.It also uses the Hebei South Network as an example to explore the development stage of the Hebei South Grid based on actual development needs.Finally,this study designs a novel power system development path for the entire supply and demand chain for the Hebei South Grid to propose ideas for constructing a new power system in China and to help green energy transformation.
基金funded by the Basic Scientific Research Special Project for Fujian Provincial Public Research Institutes(2020R10310011,2019R1031-12)the National Natural Science Foundation of China(32001577)+4 种基金the Foreign Cooperation Projects for FAAS(DWHZ2021-20)the Opening Foundation of Fujian Key Laboratory for Vegetable Breeding(FJVRC2020-02)the Free Explore Program for FAAS(ZYTS2019007)the Guangxi Natural Science Foundation Program(2018GXNSFDA281027)the Science and Technology Innovative Team in Fujian Academy of Agricultural Sciences(CXTD2021008-3).
文摘Peanut(Arachis hypogaea L.)is an oil and economic crop of vital importance,and peanut pod is the key organ influencing the yield and processing quality.Hence,the Pod-related traits(PRTs)are considered as important agronomic traits in peanut breeding.To broaden the variability of PRTs in current peanut germplasms,three elite peanut cultivars were used to construct Ethyl methane sulfonate(EMS)-induced mutant libraries in this study.The optimal EMS treatment conditions for the three peanut varieties were determined.It was found that the median lethal dose(LD50)of EMS treatment varied greatly among different genotypes.Finally,the EMS-induced peanut mutant libraries were constructed and a total of 124 mutant lines for PRTs were identified and evaluated.Furthermore,“M-8070”,one of the mutant lines for pod constriction,was re-sequenced via high-throughput sequencing technology.The genome-wide variations between“M-8070”and its wild parent“Fuhua 8”(FH 8)were detected.2994 EMS-induced single nucleotide polymorphisms(SNPs)and 1188 insertion-deletions(InDels)between“M-8070”and its wild parent were identified.The predominant SNP mutation type was C/G to T/A transitions,while the predominant InDel mutation type was“1-bp”.We analyzed the distribution of identified mutations and annotated their functions.Most of the mutations(91.68%of the SNPs and 77.69%of the InDels)were located in the intergenic region.72 SNPs were identified in the exonic region,leading to 27 synonymous,43 nonsynonymous and 2 stop-gain variation for gene structure.13 Indels were identified in the exonic region,leading to 4 frame-shift,8 non-frame-shift and 1 stop-gain variations of genes.These mutations may lead to the phenotypic variation of“M-8070”.Our study provided valuable resources for peanut improvement and functional genomic research.
文摘While the internet skills of the elderly is no longer a big problem,it is still necessary to further improve the online shopping experience and activity of the elderly.Evidently,the frequency of seniors shopping online is not nearly as high as the younger generation,as the elderly online shopping frequency is still calculated by weeks.People with higher education and younger age are more likely to accept technology products and understand how to use them,but people with lower education and older age will find it harder to use technology product.The majority of the elderly have a vision for the further development of technology to help them.This study shows that the elderly group shopping demand is large,but when the majority of the elderly choose offline consumption,the option of just a simple online solution is insufficient.Some shopping apps have made improvements in such aspects as font enlargement,color contrast enhancement and simplified operation steps.However,these improvements only solved the superficial problems,and failed to consider and solve the problems based on the experience of the elderly.
基金partially supported by the National Natural Science Foundation of China (81571768)
文摘In cryopreservation,the addition of cryoprotectant can change the intra-and extra-cellular osmotic pressure,affect the cell morphology,and induce blebs on the plasma membrane.In this study,the blebs of cells microencapsulated in the alginate microsphere induced by osmotic shock were studied,and the effects of microencapsulation on bleb size and cell viability were determined.Firstly,a coaxial co-flow focusing device was applied to generate cell-laden microcapsules using alginate hydrogel in this paper.Then,cellular blebs induced by DMSO with various concentrations under microencapsulation were compared with that when non-encapsulated,and the dynamic process of cellular bleb was investigated.Finally,the qualitative relationship between bleb size and cell viability in the presence of DMSO was built,and thus the effects of microencapsulation on bleb size and viability were evaluated.The results show that the bleb size is smaller and the cell viability is higher,and cell microencapsulation can significantly inhibit the excessively large blebs generated on the cell membrane and reduce the osmotic damage to cells when loading cryoprotectant and then to improve cell viability during cryopreservation.This work can provide insights for optimizing cryoprotectant-loading protocols,offer a new avenue to study cell blebbing,and advance future research on cryopreservation of rare cells and biomaterials.
基金Supported by the National Natural Science Foundation of China(51375001)。
文摘A comprehensive performance evaluation method for the tunnel boring machine(TBM)cutterhead is proposed in this paper.The evaluation system is established on strength and vibration.Based on fracture mechanics theory,fatigue strength evaluation indices are determined under critical crack length.The concept of crack regions division is proposed to evaluate fatigue strength more accurately and specifically.In addition,the velocities in three directions of critical locations are obtained with dynamics equations.Then,the root-mean-square values of velocities are taken as the vibration severity indices.Taking the cutterhead of Jilin diversion engineering as an example,the evaluations of each index are completed;then,the vibration of the TBM cutterhead is measured and compared with the theoretical calculation results.There are similar change laws between the theoretical calculation results and the testing results of the cutterhead acceleration,which proves that the method of calculation of the vibration index is effective,the reliability of the cutter saddle welding should be paid attention to when the TBM is working,and the condition of vibration severity of the TBM cutterhead meets the requirements but needs to be improved.
基金supported by the National Natural Science Foundation of China(No.22001248)the Fundamental Research Funds for the Central Universities and University of Chinese Academy of Sciences.
文摘A charge transfer complex(CTC)-enabled photoreduction of ether phosphonium salts for the generation of oxyalkyl radicals was described.The photoreduction provides a convenient method to achieve selective oxyalkylation of enamides with broad substrate scope.The method features operational simplicity,mild and inherent green conditions.
基金supported by grants from the Natural Science Foundation of Shandong Province(ZR2020JQ14 and ZR2019ZD16)the National Natural Science Foundation of China(31872864,32171935,31722038,31720103910,and U1906202)+2 种基金the Agricultural Variety Improvement Project of Shandong Province(2022LZGC002)the National Key Research and Development Program of China(2022YFD1201700)the Project for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province(2020KJE002).
文摘Alkali stress is a major constraint for crop production in many regions of saline-alkali land.However,little is known about the mechanisms through which wheat responds to alkali stress.In this study,we identified a calcium ion-binding protein from wheat,TaCCD1,which is critical for regulating the plasma membrane(PM)H^(+)-ATPase-mediated alkali stress response.PM H+-ATPase activity is closely related to alkali tolerance in the wheat variety Shanrong 4(SR4).We found that two D-clade type 2C protein phosphatases,TaPP2C.D1 and TaPP2C.D8(TaPP2C.D1/8),negatively modulate alkali stress tolerance by dephosphorylating the penultimate threonine residue(Thr926)of TaHA2 and thereby inhibiting PM H+-ATPase activity.Alkali stress induces the expression of TaCCD1 in SR4,and TaCCD1 interacts with TaSAUR215,an early auxin-responsive protein.These responses are both dependent on calcium signaling triggered by alkali stress.TaCCD1 enhances the inhibitory effect of TaSAUR215 on TaPP2C.D1/8 activity,thereby promoting the activity of the PM H^(+)-ATPase TaHA2 and alkali stress tolerance in wheat.Functional and genetic analyses verified the effects of these genes in response to alkali stress,indicating that TaPP2C.D1/8 function downstream of TaSAUR215 and TaCCD1.Collectively,this study uncovers a new signaling pathway that regulates wheat responses to alkali stress,in which Ca^(2+)-dependent TaCCD1 cooperates with TaSAUR215 to enhance PM H+-ATPase activity and alkali stress tolerance by inhibiting TaPP2C.D1/8-mediated dephosphorylation of PM H+-ATPase TaHA2 in wheat.
基金financial support from the National Natural Science Foundation of China(Nos.22001248 and 22173103)the Fundamental Research Funds for the Central Universities and the University of the Chinese Academy of Sciences。
文摘We report the Lewis acid catalysis of aryldiazonium salts,and their Lewis acidity applications in photogeneration of aryl radicals under additive-,photocatalyst-and transition metal-free conditions.In this visible light-mediated transformation,the Lewis acidic character of aryldiazonium salts enables access to the photoactive charge transfer complex with dichalcogenides.The usefulness and versatility of this new protocol are demonstrated through the chalcogenation of a variety of aryldiazonium salts.
基金financial support from the National Natural Science Foundation of China(Nos.22001248 and 22173103)the Fundamental Research Funds for the Central Universities and the University of the Chinese Academy of Sciences。
文摘Photoredox-catalyzed hydrodifluoromethylation of alkenes has become an effective method to introduce difluoromethyl group into organic molecules.As the reported methods involve either photocatalysts or superstoichiometric amounts of additives,we herein describe a simple alternative without using photocatalyst or additive for the hydrodifluoromethylation of alkenes,through photoactivation of difluoromethyltriphenylphosphonium iodide salt.Mechanistic studies shed light on how the transformation takes place.
基金This work was supported by the Natural Science Foundation of Hunan Province(2022JJ30798)the Guiding Project of Hunan Health Commission(202202083650)+1 种基金the extracurricular Scientific Research and Training Program for Medical Students of Central South University(202229KT1824 and 202229KT1845)Additionally,we acknowledge the support from the platform of Clinical Research Center For Medical Imaging In Hunan Province(2020SK4001).
文摘As an emerging strategy in antitumor therapy,photodynamic therapy(PDT)has garnered significant attention in recent years for the treatment of various malignant tumors.This is due to its low side effects,superior spatial selectivity,and maximum preservation of normal tissue function.However,the hypoxic nature of tumors,continuous oxygen consumption,and microvascular damage associated with PDT treatment have impeded its development.Therefore,the focus of antitumor therapy has shifted towards enhancing the efficacy of PDT by addressing tumor hypoxia.The objective of this review is to assess and summarize the recent advancements in tumor treatment using synergistic therapy strategies(PDT+X,where X represents photothermal therapy,chemodynamic therapy,chemotherapy,immunotherapy,Photoacoustic therapy,etc.)that overcome hypoxia.Additionally,this review aims to outline the advantages and disadvantages of various collaborative methods for improving tumor hypoxia,while also discussing the challenges that lie ahead for future research.