期刊文献+

二次检索

题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息

年份

共找到4篇文章
< 1 >
每页显示 20 50 100
Adaptive mutation sparrow search algorithm-Elman-AdaBoost model for predicting the deformation of subway tunnels 被引量:2
1
作者 xiangzhen zhou Wei Hu +3 位作者 Zhongyong Zhang Junneng Ye Chuang Zhao Xuecheng Bian 《Underground Space》 SCIE EI CSCD 2024年第4期320-360,共41页
A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent ... A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent deep excavations in soft ground.The novelty is that the modified SSA proposes adaptive adjustment strategy to create a balance between the capacity of exploitation and exploration.In AM-SSA,firstly,the population is initialized by cat mapping chaotic sequences to improve the ergodicity and randomness of the individual sparrow,enhancing the global search ability.Then the individuals are adjusted by Tent chaotic disturbance and Cauchy mutation to avoid the population being too concentrated or scattered,expanding the local search ability.Finally,the adaptive producer-scrounger number adjustment formula is introduced to balance the ability to seek the global and local optimal.In addition,it leads to the improved algorithm achieving a better accuracy level and convergence speed compared with the original SSA.To demonstrate the effectiveness and reliability of AM-SSA,23 classical benchmark functions and 25 IEEE Congress on Evolutionary Computation benchmark test functions(CEC2005),are employed as the numerical examples and investigated in comparison with some wellknown optimization algorithms.The statistical results indicate the promising performance of AM-SSA in a variety of optimization with constrained and unknown search spaces.By utilizing the AdaBoost algorithm,multiple sets of weak AMSSA-Elman predictor functions are restructured into one strong predictor by successive iterations for the tunnel deformation prediction output.Additionally,the on-site monitoring data acquired from a deep excavation project in Ningbo,China,were selected as the training and testing sample.Meanwhile,the predictive outcomes are compared with those of other different optimization and machine learning techniques.In the end,the obtained results in this real-world geotechnical engineering field reveal the feasibility of the proposed hybrid algorithm model,illustrating its power and superiority in terms of computational efficiency,accuracy,stability,and robustness.More critically,by observing data in real time on daily basis,the structural safety associated with metro tunnels could be supervised,which enables decision-makers to take concrete control and protection measures. 展开更多
关键词 Adjacent deep excavations Existing subway tunnels Adaptive mutation sparrow search algorithm Metaheuristic optimization Benchmark test functions Elman neural networks
原文传递
Hypoxic and temporal variation in the endocrine disrupting toxicity of perfluorobutanesulfonate in marine medaka(Oryzias melastigma) 被引量:1
2
作者 Baili Sun Jing Li +3 位作者 Yachen Bai xiangzhen zhou Paul K.S.Lam Lianguo Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第2期279-291,共13页
Perfluorobutanesulfonate(PFBS)is an emerging pollutant capable of potently disrupting the sex and thyroid endocrine systems of teleosts.However,the hypoxic and temporal variation in PFBS endocrine disrupting toxicity ... Perfluorobutanesulfonate(PFBS)is an emerging pollutant capable of potently disrupting the sex and thyroid endocrine systems of teleosts.However,the hypoxic and temporal variation in PFBS endocrine disrupting toxicity remain largely unknown.In the present study,adult marine medaka were exposed to environmentally realistic concentrations of PFBS(0 and 10μg/L)under normoxia or hypoxia conditions for 7 days,aiming to explore the interactive behavior between PFBS and hypoxia.In addition,PFBS singular exposure was extended till 21days under normoxia to elucidate the time-course progression in PFBS toxicity.The results showed that hypoxia inhibited the growth and caused the suspension of egg spawn regardless of PFBS exposure.With regard to the sex endocrine system,7-day PFBS exposure led to an acute stimulation of transcriptional profiles in females,which,subsequently,recovered after the 21-day exposure.The potency of hypoxia to disturb the sex hormones was much stronger than PFBS.A remarkable increase in estradiol concentration was noted in medaka blood after hypoxia exposure.Changes in sex endocrinology of coexposed fish were largely determined by hypoxia,which drove the formation of an estrogenic environment.PFBS further enhanced the endocrine disrupting effects of hypoxia.However,the hepatic synthesis of vitellogenin and choriogenin,two commonly used sensitive biomarkers of estrogenic activity,failed to initiate in response to the estrogen stimulus.Compared to sex endocrine system,disturbances in thyroidal axis by PFBS or hypoxia were relatively mild.Overall,the present findings will advance our toxicological understanding about PFBS pollutant under the interference of hypoxia. 展开更多
关键词 Perfluorobutanesulfonate(PFBS) Aquatic hypoxia Temporal toxicity Combined exposure Endocrine disruption Marine medaka
原文传递
Variability in fecal metabolome depending on age, PFBS pollutant, and fecal transplantation in zebrafish: A non-invasive diagnosis of health 被引量:1
3
作者 Baili Sun Mengyuan Liu +3 位作者 Lizhu Tang xiangzhen zhou Chenyan Hu Lianguo Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第5期530-540,共11页
To protect the wellbeing of research animals,certain non-invasive measures are in increasing need to facilitate an early diagnosis of health and toxicity.In this study,feces specimen was collected from adult zebrafish... To protect the wellbeing of research animals,certain non-invasive measures are in increasing need to facilitate an early diagnosis of health and toxicity.In this study,feces specimen was collected from adult zebrafish to profile the metabolome fingerprint.Variability in fecal metabolite composition was also distinguished as a result of aging,perfluorobutanesulfonate(PFBS)toxicant,and fecal transplantation.The results showed that zebrafish feces was very rich in a diversity of metabolites that belonged to several major classes,including lipid,amino acid,carbohydrate,vitamin,steroid hormone,and neurotransmitter.Fecal metabolites had functional implications to multiple physiological activities,which were characterized by the enrichment of digestion,absorption,endocrine,and neurotransmission processes.The high richness and functional involvement of fecal metabolites pinpointed feces as an abundant source of diagnostic markers.By comparison between young and aged zebrafish,fundamental modifications of fecal metabolomes were caused by aging progression,centering on the neuroactive ligand-receptor interaction pathway.Exposure of aged zebrafish to PFBS pollutant also significantly disrupted the metabolomic structure in feces.Of special concern were the changes in fecal hormone intermediates after PFBS exposure,which was concordant with the in vivo endocrine disrupting effects of PFBS.Furthermore,itwas intriguing that transplantation of young zebrafish feces efficientlymitigated the metabolic perturbation of PFBS in aged recipients,highlighting the health benefits of therapeutic strategies based on gut microbiota manipulation.In summary,the present study provides preliminary clues to evidence the non-invasive advantage of fecal metabolomics in the early diagnosis and prediction of physiology and toxicology. 展开更多
关键词 Fecal metabolome Aging microbiota Perfluorobutanesulfonate(PFBS) Fecal transplantation Non-invasive diagnosis ZEBRAFISH
原文传递
Exposure to methylparaben at environmentally realistic concentrations significantly impairs neuronal health in adult zebrafish 被引量:1
4
作者 Chenyan Hu Yachen Bai +2 位作者 Baili Sun xiangzhen zhou Lianguo Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第10期134-144,共11页
Methylparaben(MeP)is an emerging aquatic pollutant that is found to impact neural functions.However,it still lacks a comprehensive understanding about its neurotoxicology.The present study exposed adult zebrafish to e... Methylparaben(MeP)is an emerging aquatic pollutant that is found to impact neural functions.However,it still lacks a comprehensive understanding about its neurotoxicology.The present study exposed adult zebrafish to environmentally realistic concentrations(0,1,3,and 10μg/L)of MeP for 28 days,with objectives to elucidate the neurotoxic effects andmechanisms.Proteomic profiling found that MeP pollutant induced distinct mechanism of neurotoxicity as a function of sex.MeP pollutant appeared to preferentially target the neurotransmission cascade via synapse junctions.In male brain,glutamatergic neural signaling was enhanced by 10μg/L of MeP in characteristics of higher glutamate neurotransmitter content(by 61.9%)and up-regulated glutamate receptor expression by 2.6-fold relative to the control.In MeP-exposed female brain,biomarker proteins of synapse formation and regeneration had significantly lower abundance,accounting for the blockage of synaptic neurotransmission.Furthermore,under the stress of MeP pollutant,both male and female zebrafish initiated a negative feedback mechanism along stress neuroendocrine axis by down-regulating the transcriptions of corticotropin-releasing hormone and its binding protein,which subsequently decreased blood cortisol concentrations.MeP subchronic exposure also disturbed innate immune function.In particular,significant increases in lipopolysaccharide(LPS)content by 15.6%were caused by MeP exposure in male brain,thereby inducing the synthesis of pro-inflammatory cytokines.In contrast,female brain was able to adaptively up-regulate the protein expression of blood brain barrier to inhibit the infiltration of LPS endotoxin into brain.Overall,the present findings pinpoint the potent neurotoxicity of MeP pollutant even at environmentally realistic concentrations. 展开更多
关键词 METHYLPARABEN NEUROTOXICITY SYNAPSE Stress Inflammation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部