Light plays an important role in the photosynthesis and metabolic process of microalgae.However,how different light conditions regulate the biomass production and protein accumulation of microalgae is mostly unknown.I...Light plays an important role in the photosynthesis and metabolic process of microalgae.However,how different light conditions regulate the biomass production and protein accumulation of microalgae is mostly unknown.In this study,the influence of different light conditions,including light colors,densities,and light:dark cycles on the cell growth and biochemical composition of Spirulina platensis was symmetrically characterized.Under different colored lights,S.platensis all shows an increase trend within the increased light intensity ranges;however,each showing different optimal light intensities.At the same light intensity,different colored lights show different growth rate of S.platensis following the sequence of red>white>green>yellow>blue.The maximum growth rate and protein accumulation were determined as 21.88 and 5.10 mg/(L·d)when illuminated under red LED.The energy efficiency of different light sources was calculated and ranked as red>white>blue≈green>yellow.Transcriptomic analysis suggests that red light can promote cell growth and protein accumulation by upregulating genes related to photosynthesis,carbon fixation,and C-N metabolism pathways.This study provides a conducive and efficient way to promote biomass production and protein accumulation of S.platensis by regulating light conditions.展开更多
In this article,the legend for Fig.3 f&g was inadvertently mislabeled.The figure below shows the wrong one.The figure should have appeared as shown below.
The Chinese fir wood was impregnated using a cyclic increasingpressure method(CIPM)with phenolic prepolymers as the impregnating modifier.Unmodified Chinese fir and progressive increasing-pressure method(PIPM)impregn...The Chinese fir wood was impregnated using a cyclic increasingpressure method(CIPM)with phenolic prepolymers as the impregnating modifier.Unmodified Chinese fir and progressive increasing-pressure method(PIPM)impregnated Chinese fir were used as reference samples and were compared and analyzed.The product’s chemical structure,internal morphology,crystal structure,and heat resistance were characterized.The transversal and longitudinal sections showed better filling effects,so that it bore greater external loading and reduced the water storage space.CIPM infused more phenolic prepolymer into the Chinese fir.Not only producing more physical filling but also forming more hydrogen bond associations and chemical bond combinations.Compared with PIPM and unmodi-fied Chinese fir,the CIPM impregnated Chinese fir had better mechanical strength and water resistance.The cellulose chains in CIPM impregnated Chinese fir were more closely linked and their crystallinity were clearly improved.Changes in internal morphology and crystal structure explained the reason why the mechanical properties and water resistance of CIPM impregnated Chinese fir were improved significantly.This Chinese fir had lower thermal decomposition rates,higher decomposition residual rates,and smaller combustion flames,which confirmed that it possessed improved heat and fire resistance.展开更多
This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer(CFRP)to address the low stiffness and strength of bamboo scrimbers.Three-point bending test and finite element model w...This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer(CFRP)to address the low stiffness and strength of bamboo scrimbers.Three-point bending test and finite element model were conducted to study the failure mode,strain-displacement relationship,load-displacement relationship and relationships between strain distribution,contact pressure and deflection,and adhesive debonding.The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets.The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams,and the flexural strength were 1.49-1.58 times that of bamboo scrimber beams.Adhesive debonding had a great influence on the strain distribution and deflection of the composite specimens.It was an important factor for the failure of the CFRP-bamboo scrimber composite specimens.According to the finite element simulation,the strain distribution,contact pressure and deflection also greatly changed with the adhesive debonding.After complete peeling,the deflection of the specimen was 3.09 times that of the unpeeled because it was no longer an integral beam.展开更多
[ Objectives] The study was conducted to investigate the molecular identification of Salvia miltiorrhiza Bge. and its adulterants by DNA barcoding andspecific primer PCR. [ Methods] With ITS2 sequenceas DNA barcode, t...[ Objectives] The study was conducted to investigate the molecular identification of Salvia miltiorrhiza Bge. and its adulterants by DNA barcoding andspecific primer PCR. [ Methods] With ITS2 sequenceas DNA barcode, the materials were amplified by PCR and sequenced, and the NJ phylogenetic tree was constructed. The secondary structure of ITS2 was predicted by database and its website established by Koetschan et al. , and the self-designed primers were used to carry out specific primer PCR identification. [Results] ITS2 sequence length was around 470 bp. The results of cluster analysis showed that S. miltiorrhiza Bge. and its adulterants were clustered on different branches and showed monophyly. The comparison of secondary structure showed that S. miltiorrhiza Bge. had little differences from S. przewalskii, while there were significant differences from A. lappa in the number, size and location of stem-loop and the rotation angle of the spiral arm from the central ring. The specific primers could distinguish the S. miltiorrhiza Bge. and its counterfeits by PCR technique. [Conclusions] DNA barcoding and specific primer PCR are effective in distinguishing S. miltiorrhiza Bge. and its adulterants, and it has an important application foreground in the identification of Chinese herbal medicines.展开更多
Wood-based nanotechnologies have received much attention in the area of photocatalytic degradation of organic contaminants in aquatic environment in recent years,because of the high abundance and renewability of wood ...Wood-based nanotechnologies have received much attention in the area of photocatalytic degradation of organic contaminants in aquatic environment in recent years,because of the high abundance and renewability of wood as well as the high reaction activity and unique structural features of these materials.Herein,we present a comprehensive review of the current research activities centering on the development of wood-based nanocatalysts for photodegradation of organic pollutants.This review begins with a brief introduction of the development of photocatalysts and hierarchical structure of wood.The review then focuses on strategies of designing novel photocatalysts based on wood or its recombinants(such as 1D fiber,2D films and 3D porous gels)using advanced nanotechnology including sol-gel method,hydrothermal method,magnetron sputtering method,dipping method and so on.Next,we highlight typical approaches that improve the photocatalytic property,including metal element doping,morphology control and semiconductor coupling.Also,the structure-activity relationship of photocatalysts is emphasized.Finally,a brief summary and prospect of wood-derived photocatalysts is provided.展开更多
基金the National Natural Science Foundation of China(Nos.42061134020,32070380)the Natural Science Foundation of Shandong Province(No.ZR2019ZD17)。
文摘Light plays an important role in the photosynthesis and metabolic process of microalgae.However,how different light conditions regulate the biomass production and protein accumulation of microalgae is mostly unknown.In this study,the influence of different light conditions,including light colors,densities,and light:dark cycles on the cell growth and biochemical composition of Spirulina platensis was symmetrically characterized.Under different colored lights,S.platensis all shows an increase trend within the increased light intensity ranges;however,each showing different optimal light intensities.At the same light intensity,different colored lights show different growth rate of S.platensis following the sequence of red>white>green>yellow>blue.The maximum growth rate and protein accumulation were determined as 21.88 and 5.10 mg/(L·d)when illuminated under red LED.The energy efficiency of different light sources was calculated and ranked as red>white>blue≈green>yellow.Transcriptomic analysis suggests that red light can promote cell growth and protein accumulation by upregulating genes related to photosynthesis,carbon fixation,and C-N metabolism pathways.This study provides a conducive and efficient way to promote biomass production and protein accumulation of S.platensis by regulating light conditions.
基金Supported by the National Natural Science Foundation of China (Nos. 42061134020, 32070380)the Natural Science Foundation of Shandong Province (No. ZR2019ZD17)
文摘In this article,the legend for Fig.3 f&g was inadvertently mislabeled.The figure below shows the wrong one.The figure should have appeared as shown below.
基金This work was financially supported by Hunan Provincial Technical Innovation Platform and Talent Program in Science and Technology,China(2019RS2040)the National Natural Science Foundation of China(31770606)Major Science and Technology Program of Hunan Province,PR China(2017NK1010).
文摘The Chinese fir wood was impregnated using a cyclic increasingpressure method(CIPM)with phenolic prepolymers as the impregnating modifier.Unmodified Chinese fir and progressive increasing-pressure method(PIPM)impregnated Chinese fir were used as reference samples and were compared and analyzed.The product’s chemical structure,internal morphology,crystal structure,and heat resistance were characterized.The transversal and longitudinal sections showed better filling effects,so that it bore greater external loading and reduced the water storage space.CIPM infused more phenolic prepolymer into the Chinese fir.Not only producing more physical filling but also forming more hydrogen bond associations and chemical bond combinations.Compared with PIPM and unmodi-fied Chinese fir,the CIPM impregnated Chinese fir had better mechanical strength and water resistance.The cellulose chains in CIPM impregnated Chinese fir were more closely linked and their crystallinity were clearly improved.Changes in internal morphology and crystal structure explained the reason why the mechanical properties and water resistance of CIPM impregnated Chinese fir were improved significantly.This Chinese fir had lower thermal decomposition rates,higher decomposition residual rates,and smaller combustion flames,which confirmed that it possessed improved heat and fire resistance.
基金by the Natural Science Foundation of China(Grant No U1737112)Chinese Postdoctoral Station of Yihua Life Science and Technology Co.,Ltd.(No.201141).
文摘This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer(CFRP)to address the low stiffness and strength of bamboo scrimbers.Three-point bending test and finite element model were conducted to study the failure mode,strain-displacement relationship,load-displacement relationship and relationships between strain distribution,contact pressure and deflection,and adhesive debonding.The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets.The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams,and the flexural strength were 1.49-1.58 times that of bamboo scrimber beams.Adhesive debonding had a great influence on the strain distribution and deflection of the composite specimens.It was an important factor for the failure of the CFRP-bamboo scrimber composite specimens.According to the finite element simulation,the strain distribution,contact pressure and deflection also greatly changed with the adhesive debonding.After complete peeling,the deflection of the specimen was 3.09 times that of the unpeeled because it was no longer an integral beam.
文摘[ Objectives] The study was conducted to investigate the molecular identification of Salvia miltiorrhiza Bge. and its adulterants by DNA barcoding andspecific primer PCR. [ Methods] With ITS2 sequenceas DNA barcode, the materials were amplified by PCR and sequenced, and the NJ phylogenetic tree was constructed. The secondary structure of ITS2 was predicted by database and its website established by Koetschan et al. , and the self-designed primers were used to carry out specific primer PCR identification. [Results] ITS2 sequence length was around 470 bp. The results of cluster analysis showed that S. miltiorrhiza Bge. and its adulterants were clustered on different branches and showed monophyly. The comparison of secondary structure showed that S. miltiorrhiza Bge. had little differences from S. przewalskii, while there were significant differences from A. lappa in the number, size and location of stem-loop and the rotation angle of the spiral arm from the central ring. The specific primers could distinguish the S. miltiorrhiza Bge. and its counterfeits by PCR technique. [Conclusions] DNA barcoding and specific primer PCR are effective in distinguishing S. miltiorrhiza Bge. and its adulterants, and it has an important application foreground in the identification of Chinese herbal medicines.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.31901249 and 31890771)the Young Elite Scientists Sponsorship Program by CAST(Grant No.2019QNRC001)+2 种基金the Scientific Research Foundation of Hunan Provincial Education Department(Grant No.18B180)the China Postdoctoral Science Foundation(Grant No.2020M672846)the Outstanding Chinese and Foreign Youth Exchange Program of China Association of Science and Technology.
文摘Wood-based nanotechnologies have received much attention in the area of photocatalytic degradation of organic contaminants in aquatic environment in recent years,because of the high abundance and renewability of wood as well as the high reaction activity and unique structural features of these materials.Herein,we present a comprehensive review of the current research activities centering on the development of wood-based nanocatalysts for photodegradation of organic pollutants.This review begins with a brief introduction of the development of photocatalysts and hierarchical structure of wood.The review then focuses on strategies of designing novel photocatalysts based on wood or its recombinants(such as 1D fiber,2D films and 3D porous gels)using advanced nanotechnology including sol-gel method,hydrothermal method,magnetron sputtering method,dipping method and so on.Next,we highlight typical approaches that improve the photocatalytic property,including metal element doping,morphology control and semiconductor coupling.Also,the structure-activity relationship of photocatalysts is emphasized.Finally,a brief summary and prospect of wood-derived photocatalysts is provided.