Atmospheric CO_(2)is one of key parameters to estimate air-sea CO_(2)flux.The Orbiting Carbon Observatory-2(OCO-2)satellite has observed the column-averaged dry-air mole fractions of global atmospheric carbon dioxide(...Atmospheric CO_(2)is one of key parameters to estimate air-sea CO_(2)flux.The Orbiting Carbon Observatory-2(OCO-2)satellite has observed the column-averaged dry-air mole fractions of global atmospheric carbon dioxide(XCO_(2))since 2014.In this study,the OCO-2 XCO_(2)products were compared between in-situ data from the Total Carbon Column Network(TCCON)and Global Monitoring Division(GMD),and modeling data from CarbonTracker2019 over global ocean and land.Results showed that the OCO-2 XCO_(2)data are consistent with the TCCON and GMD in situ XCO_(2)data,with mean absolute biases of 0.25×10^(-6)and 0.67×10^(-6),respectively.Moreover,the OCO-2 XCO_(2)data are also consistent with the CarbonTracker2019 modeling XCO_(2)data,with mean absolute biases of 0.78×10^(-6)over ocean and 1.02×10^(-6)over land.The results indicated the high accuracy of the OCO-2 XCO_(2)product over global ocean which could be applied to estimate the air-sea CO_(2)flux.展开更多
Incubation experiments have shown that ultra- violet radiation (UVR) has significant influences on marine primary production (MPP). However, existing satellite remote sensing models of MPP only consider the effect...Incubation experiments have shown that ultra- violet radiation (UVR) has significant influences on marine primary production (MPP). However, existing satellite remote sensing models of MPP only consider the effects of visible light radiation, ignoring the UVR. Additionally, the ocean color satellite data currently used for MPP estimation contain no UV bands. To better understand the mechanism of MPP model development with reference to satellite remote sensing, including UVR's effects, we first reviewed recent studies of UVR's effects on phytoplankton and MPP, which highlights the need for improved satellite remote sensing of MPP. Then, based on current MPP models using visible radiation, we discussed the quantitative methods used to implement three key model variables related to UVR: the UVR intensity at the sea surface, the attenuation of UVR in the euphotic layer, and the maximum or optimal photosynthetic rate, con- sidering the effects of UVR. The implementation of these UVR-related variables could be useful in further assessing UVR's effects on the remote sensing of MPP, and in re- evaluating our existing knowledge of MPP estimation at large spatial scales and long-time scales related to global change.展开更多
基金The National Key Research and Development Programme of China under contract No.2017YFA0603004the Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)(Zhanjiang Bay Laboratory)under contract No.ZJW-2019-08+1 种基金the National Natural Science Foundation of China under contract Nos 41825014,41676172 and 41676170the Global Change and Air-Sea Interaction Project of China under contract Nos GASI-02-SCS-YGST2-01,GASI-02-PACYGST2-01 and GASI-02-IND-YGST2-01。
文摘Atmospheric CO_(2)is one of key parameters to estimate air-sea CO_(2)flux.The Orbiting Carbon Observatory-2(OCO-2)satellite has observed the column-averaged dry-air mole fractions of global atmospheric carbon dioxide(XCO_(2))since 2014.In this study,the OCO-2 XCO_(2)products were compared between in-situ data from the Total Carbon Column Network(TCCON)and Global Monitoring Division(GMD),and modeling data from CarbonTracker2019 over global ocean and land.Results showed that the OCO-2 XCO_(2)data are consistent with the TCCON and GMD in situ XCO_(2)data,with mean absolute biases of 0.25×10^(-6)and 0.67×10^(-6),respectively.Moreover,the OCO-2 XCO_(2)data are also consistent with the CarbonTracker2019 modeling XCO_(2)data,with mean absolute biases of 0.78×10^(-6)over ocean and 1.02×10^(-6)over land.The results indicated the high accuracy of the OCO-2 XCO_(2)product over global ocean which could be applied to estimate the air-sea CO_(2)flux.
文摘Incubation experiments have shown that ultra- violet radiation (UVR) has significant influences on marine primary production (MPP). However, existing satellite remote sensing models of MPP only consider the effects of visible light radiation, ignoring the UVR. Additionally, the ocean color satellite data currently used for MPP estimation contain no UV bands. To better understand the mechanism of MPP model development with reference to satellite remote sensing, including UVR's effects, we first reviewed recent studies of UVR's effects on phytoplankton and MPP, which highlights the need for improved satellite remote sensing of MPP. Then, based on current MPP models using visible radiation, we discussed the quantitative methods used to implement three key model variables related to UVR: the UVR intensity at the sea surface, the attenuation of UVR in the euphotic layer, and the maximum or optimal photosynthetic rate, con- sidering the effects of UVR. The implementation of these UVR-related variables could be useful in further assessing UVR's effects on the remote sensing of MPP, and in re- evaluating our existing knowledge of MPP estimation at large spatial scales and long-time scales related to global change.