近年来,具有独特电子效应和协同效应的异质界面工程策略在扩展催化功能和提高本征活性方面显示出较大的应用潜力.其中,具有晶型/无定形(c/a)异质结构的电催化剂,由于结构上的巨大差异,展现出显著的催化活性.然而,c/a-异质界面的可控调...近年来,具有独特电子效应和协同效应的异质界面工程策略在扩展催化功能和提高本征活性方面显示出较大的应用潜力.其中,具有晶型/无定形(c/a)异质结构的电催化剂,由于结构上的巨大差异,展现出显著的催化活性.然而,c/a-异质界面的可控调控及其与电催化性能的内在联系仍缺乏系统研究.因此,本文采用“酸刻蚀-气相磷硫化-淬火”方法,合成了具有可调控c/a异质界面的q-CoPS材料,并将其应用于碱性整体水分解.同时,通过控制淬火的初始温度,实现了对CoPS纳米棒中c/a比例的有效调控.一般来说,在晶型材料中,表面催化往往发生在固定的晶面上.而无定形材料可以同时满足体积和表面的催化.同时,无定形材料具有柔韧性,在催化反应过程中可以转化为任何需要的其他形式,因此在耐腐蚀方面也具有较好的自愈性能.此外,无定形材料还具有丰富的缺陷,运用缺陷工程可以带来一定的性能提升.因此,二者的协同作用可以提升催化剂的催化性能.本文创新性地提出了通过改变淬火初始温度对CoPS纳米棒中c/a比进行调控.采用“酸刻蚀-气相磷硫化-淬火”方法,成功制备了具有独特c/a-CoPS核壳异质结构的q-CoPS纳米棒.随着淬火初始温度的升高,无定形CoPS壳的面积也在逐渐增大.这可能是由于处于非平衡状态的磷硫化物在超低温液氮中突然淬火,处于热运动的Co,P和S原子会迅速冷却,趋向于形成无序的CoPS无定形材料.值得注意的是,制备得到的q-CoPS纳米棒具有合适的c/a含量比,提供了丰富的c/a界面活性位点,并优化了Co位点的电子构型.在析氢反应(HER)中,q-CoPS/CF仅需90 m V的过电位即可以达到1000 m Acm^(-2)的工业级电流密度,结果优于先进的Pt/C.同时,q-CoPS/CF在肼氧化反应(HzOR)中,仅0.06 V时即可实现1000 m Acm^(-2)的电流密度.密度泛函理论计算表明,在HER和HzOR中,界面处的Co原子的内在活性远高于P原子和S原子,c/a-异质界面处活性位点的能垒远低于晶型CoPS和无定形CoPS.此外,Co位点作为c/a界面的双功能活性位点,有效地优化了HER和HzOR的反应动力学.综上所述,q-CoPS/CF催化剂电催化性能的提升主要是由于其具备高活性的CoPS、合适的晶型/无定形(c/a)比例和较大的比表面积.本文为设计具有c/a异质结构的高活性电极提供参考,为进一步探索c/a异质结构的演化和确定c/a界面的活性位点提供借鉴.展开更多
Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining...Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.展开更多
Objective The aim of this study was to investigate the prospective association between physical activity(PA),independently or in conjunction with other contributing factors,and osteoporosis(OP)outcomes.Methods The Phy...Objective The aim of this study was to investigate the prospective association between physical activity(PA),independently or in conjunction with other contributing factors,and osteoporosis(OP)outcomes.Methods The Physical Activity in Osteoporosis Outcomes(PAOPO)study was a community-based cohort investigation.A structured questionnaire was used to gather the participants’sociodemographic characteristics.Bone mineral density(BMD)measurements were performed to assess OP outcomes,and the relationship between BMD and OP was evaluated within this cohort.Results From 2013 to 2014,8,471 participants aged 18 years and older were recruited from Tangshan,China’s Jidong community.Based on their PA level,participants were categorized as inactive,moderately active,or very active.Men showed higher physical exercise levels than women across the activity groups.BMD was significantly higher in the very active group than in the moderately active and inactive groups.Individuals aged>50 years are at a higher risk of developing OP and osteopenia.Conclusion The PAOPO study offers promising insights into the relationship between PA and OP outcomes,encouraging the implementation of PA in preventing and managing OP.展开更多
The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite r...The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite reservoirs were predicted using the techniques of pre-stack Kirchhoff-Q compensation for absorption,inverse Q filtering,low-to high-frequency compensation,forward modeling,and facies-controlled seismic meme inversion.The results are obtained in six aspects.First,the dolomite reservoirs mainly exist in the middle and lower parts of the second member of Qixia Formation(Qi2 Member),which coincide with the zones shoal cores are developed.Second,the forward modeling shows that the trough energy at the top and bottom of shoal core increases with increasing shoal-core thickness,and weak peak reflections are associated in the middle of shoal core.Third,five types of seismic waveform are identified through waveform analysis of seismic facies.Type-Ⅰ and Type-Ⅱ waveforms correspond to promising facies(shoal core microfacies).Fourth,vertically,two packages of thin dolomite reservoirs turn up in the sedimentary cycle of intraplatform shoal in the Qi2 Member,and the lower package is superior to the upper package in dolomite thickness,scale and lateral connectivity.Fifth,in plane,significantly controlled by sedimentary facies,dolomite reservoirs laterally distribute with consistent thickness in shoal cores at topographical highs and extend toward the break.Sixth,the promising prospects are the zones with thick dolomite reservoirs and superimposition of horstegraben structural traps.展开更多
Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles ...Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles and two-dimensional(2D)photothermal materials in PCMs for efficient capture and conversion of solar energy into thermal energy.Highly scattered Co-anchored MoS_(2)nanoflower cluster serving as photon and phonon triggers was prepared by in-situ hydrothermal growth of ZIF67 polyhedron on 2D MoS_(2)and subsequent high-temperature carbonization.After encapsulating thermal storage unit(paraffin wax),the obtained composite PCMs integrated high-performance photothermal conversion and thermal energy storage capability.Benefiting from the synergistic enhancement of OD Co nanoparticles with localized surface plasmon resonance effect,carbon layer with the conjugation effect and 2D MoS_(2)with strong solar absorption,composite PCMs exhibited a high photothermal conversion efficiency of 95.19%,Additionally,the resulting composite PCMs also demonstrated long-term thermal sto rage stability and durable structu ral stability after 300 thermal cycles.The proposed collabo rative co-incorporation strategy provides some innovative references for developing next-generation photothermal PCMs in solar energy utilization.展开更多
[Objectives]To make full use of crop rhizosphere microbial resources.[Methods]Illumina NovaSeq sequencing platform was used to analyze the richness and diversity of microbial community structure in rhizosphere soil of...[Objectives]To make full use of crop rhizosphere microbial resources.[Methods]Illumina NovaSeq sequencing platform was used to analyze the richness and diversity of microbial community structure in rhizosphere soil of rice and maize crops in Baitu Town,Gaoyao District,Zhaoqing City.[Results]A total of 14936 OTUs of bacteria and 1905 OTUs of fungi were obtained from three samples of rice rhizosphere soil,and 13437 OTUs of bacteria and 1413 OTUs of fungi were obtained from three samples of maize rhizosphere soil.The diversity and richness of bacterial communities were higher than those of fungi.There are differences in soil bacterial and fungal communities among different crop samples.The analysis of species with bacteria difference at genus level among crop rhizosphere soil samples showed that 18 genera with significant differences were obtained from 6 samples;species analysis of fungi at the genus level showed that 3 genera with significant differences were obtained from 6 samples.[Conclusions]The research results of this paper have positive significance for the development and utilization of soil resources in Zhaoqing City and the full exploitation of rice and maize rhizosphere microbial resources.展开更多
Objective:To observe the clinical effects of Jianpi Fuzheng Decoction in patients with gastric cancer and cancer-related fatigue(CRF).Methods:Using the random number table method as a reference,68 cases of gastric CRF...Objective:To observe the clinical effects of Jianpi Fuzheng Decoction in patients with gastric cancer and cancer-related fatigue(CRF).Methods:Using the random number table method as a reference,68 cases of gastric CRF were randomly divided into two groups.One group served as the control group and received basic treatment,while the other was the observation group.The observation group,in addition to the control group’s treatment,received Jianpi Fuzheng Decoction.The clinical treatment effectiveness,fatigue scores,immune function indicators,and treatment safety were compared between the two groups.Results:The total clinical treatment effectiveness of the observation group and the improvement in immune function indicators after treatment were higher than those of the control group.The fatigue score after treatment was lower in the observation group than in the control group(P<0.05).No serious adverse reactions occurred during the treatment in either group.Conclusion:Jianpi Fuzheng Decoction can enhance the clinical treatment effectiveness for gastric cancer patients with CRF.It facilitates the acceleration of fatigue symptom improvement and immune function enhancement.The medication’s safety is guaranteed,making it worthy of promotion.展开更多
This article briefly introduces the weighing device for steel billets in front of the heating furnace of the high-speed wire rod unit,and analyzes and summarizes the problems existing in the original weighing device f...This article briefly introduces the weighing device for steel billets in front of the heating furnace of the high-speed wire rod unit,and analyzes and summarizes the problems existing in the original weighing device for steel billets in production and use.Based on on-site installation conditions,design a new weighing method,match a large range weighing sensor,upgrade the automation control of the weighing device,and remotely transmit the billet weighing data to the MES system of the group.The automatic,stable,reliable,and accurate measurement of steel billet raw materials has been achieved,providing important guarantees for the accurate measurement of production line billet and product yield.展开更多
Background:High-fidelity simulation has been demonstrated to make great progress in learning.However,there is still ongoing exploration on how to fully harness the advantages of this teaching method and enhance its ef...Background:High-fidelity simulation has been demonstrated to make great progress in learning.However,there is still ongoing exploration on how to fully harness the advantages of this teaching method and enhance its effectiveness.This study conducted high-fidelity simulation in medical nursing based on the Healthcare Simulation Standards of Best Practice and evaluated its effect.Methods:The study was conducted from September 2019 to June 2020.A total of 82 undergraduate nursing students from a university in Shanghai participated in the high-fidelity simulation in medical nursing.The simulation design scale,educational practices in simulation scale,and students’satisfaction and self-confidence were used to evaluate the effect.Results:The mean score of simulation design scale was 4.06±0.63 with the mean scores of all dimensions being over 3.0.The mean score of educational practices in simulation scale was 4.14±0.56 with the mean scores of all dimensions being over 4.0.The mean scores of students’satisfaction and self-confidence were 4.07±0.72 and 3.89±0.58,respectively.Conclusion:Students reported high levels of simulation design and educational practices in simulation.They were also satisfied with learning and reported high levels of self-confidence.Some key points need to be considered so that the learning effects might be optimized.展开更多
文摘近年来,具有独特电子效应和协同效应的异质界面工程策略在扩展催化功能和提高本征活性方面显示出较大的应用潜力.其中,具有晶型/无定形(c/a)异质结构的电催化剂,由于结构上的巨大差异,展现出显著的催化活性.然而,c/a-异质界面的可控调控及其与电催化性能的内在联系仍缺乏系统研究.因此,本文采用“酸刻蚀-气相磷硫化-淬火”方法,合成了具有可调控c/a异质界面的q-CoPS材料,并将其应用于碱性整体水分解.同时,通过控制淬火的初始温度,实现了对CoPS纳米棒中c/a比例的有效调控.一般来说,在晶型材料中,表面催化往往发生在固定的晶面上.而无定形材料可以同时满足体积和表面的催化.同时,无定形材料具有柔韧性,在催化反应过程中可以转化为任何需要的其他形式,因此在耐腐蚀方面也具有较好的自愈性能.此外,无定形材料还具有丰富的缺陷,运用缺陷工程可以带来一定的性能提升.因此,二者的协同作用可以提升催化剂的催化性能.本文创新性地提出了通过改变淬火初始温度对CoPS纳米棒中c/a比进行调控.采用“酸刻蚀-气相磷硫化-淬火”方法,成功制备了具有独特c/a-CoPS核壳异质结构的q-CoPS纳米棒.随着淬火初始温度的升高,无定形CoPS壳的面积也在逐渐增大.这可能是由于处于非平衡状态的磷硫化物在超低温液氮中突然淬火,处于热运动的Co,P和S原子会迅速冷却,趋向于形成无序的CoPS无定形材料.值得注意的是,制备得到的q-CoPS纳米棒具有合适的c/a含量比,提供了丰富的c/a界面活性位点,并优化了Co位点的电子构型.在析氢反应(HER)中,q-CoPS/CF仅需90 m V的过电位即可以达到1000 m Acm^(-2)的工业级电流密度,结果优于先进的Pt/C.同时,q-CoPS/CF在肼氧化反应(HzOR)中,仅0.06 V时即可实现1000 m Acm^(-2)的电流密度.密度泛函理论计算表明,在HER和HzOR中,界面处的Co原子的内在活性远高于P原子和S原子,c/a-异质界面处活性位点的能垒远低于晶型CoPS和无定形CoPS.此外,Co位点作为c/a界面的双功能活性位点,有效地优化了HER和HzOR的反应动力学.综上所述,q-CoPS/CF催化剂电催化性能的提升主要是由于其具备高活性的CoPS、合适的晶型/无定形(c/a)比例和较大的比表面积.本文为设计具有c/a异质结构的高活性电极提供参考,为进一步探索c/a异质结构的演化和确定c/a界面的活性位点提供借鉴.
基金supported by the National Key Research and Development Project of China (Grant No.2023YFB3407200)the National Natural Science Foundation of China (Grant Nos.52225506,52375430,and 52188102)the Program for HUST Academic Frontier Youth Team (Grant No.2019QYTD12)。
文摘Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.
基金supported by the Integrated Project of Major Research Plan of the National Natural Science Foundation of China(No.92249303)National Natural Science Foundation of China(Nos.82371603,82230071,82102217)+3 种基金Shanghai Committee of Science and Technology Laboratory Animal Research Project(No.23141900600)Science and Technology Commission of Shanghai Municipality(21YF1413100)Shanghai Hospital Development Center(SHDC2023CRT013)Baoshan District Health Commission Talents(Excellent Academic Leaders)Program(BSWSYX-2024-05).
文摘Objective The aim of this study was to investigate the prospective association between physical activity(PA),independently or in conjunction with other contributing factors,and osteoporosis(OP)outcomes.Methods The Physical Activity in Osteoporosis Outcomes(PAOPO)study was a community-based cohort investigation.A structured questionnaire was used to gather the participants’sociodemographic characteristics.Bone mineral density(BMD)measurements were performed to assess OP outcomes,and the relationship between BMD and OP was evaluated within this cohort.Results From 2013 to 2014,8,471 participants aged 18 years and older were recruited from Tangshan,China’s Jidong community.Based on their PA level,participants were categorized as inactive,moderately active,or very active.Men showed higher physical exercise levels than women across the activity groups.BMD was significantly higher in the very active group than in the moderately active and inactive groups.Individuals aged>50 years are at a higher risk of developing OP and osteopenia.Conclusion The PAOPO study offers promising insights into the relationship between PA and OP outcomes,encouraging the implementation of PA in preventing and managing OP.
文摘The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite reservoirs were predicted using the techniques of pre-stack Kirchhoff-Q compensation for absorption,inverse Q filtering,low-to high-frequency compensation,forward modeling,and facies-controlled seismic meme inversion.The results are obtained in six aspects.First,the dolomite reservoirs mainly exist in the middle and lower parts of the second member of Qixia Formation(Qi2 Member),which coincide with the zones shoal cores are developed.Second,the forward modeling shows that the trough energy at the top and bottom of shoal core increases with increasing shoal-core thickness,and weak peak reflections are associated in the middle of shoal core.Third,five types of seismic waveform are identified through waveform analysis of seismic facies.Type-Ⅰ and Type-Ⅱ waveforms correspond to promising facies(shoal core microfacies).Fourth,vertically,two packages of thin dolomite reservoirs turn up in the sedimentary cycle of intraplatform shoal in the Qi2 Member,and the lower package is superior to the upper package in dolomite thickness,scale and lateral connectivity.Fifth,in plane,significantly controlled by sedimentary facies,dolomite reservoirs laterally distribute with consistent thickness in shoal cores at topographical highs and extend toward the break.Sixth,the promising prospects are the zones with thick dolomite reservoirs and superimposition of horstegraben structural traps.
基金financially supported by National Natural Science Foundation of China(No.51902025)。
文摘Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles and two-dimensional(2D)photothermal materials in PCMs for efficient capture and conversion of solar energy into thermal energy.Highly scattered Co-anchored MoS_(2)nanoflower cluster serving as photon and phonon triggers was prepared by in-situ hydrothermal growth of ZIF67 polyhedron on 2D MoS_(2)and subsequent high-temperature carbonization.After encapsulating thermal storage unit(paraffin wax),the obtained composite PCMs integrated high-performance photothermal conversion and thermal energy storage capability.Benefiting from the synergistic enhancement of OD Co nanoparticles with localized surface plasmon resonance effect,carbon layer with the conjugation effect and 2D MoS_(2)with strong solar absorption,composite PCMs exhibited a high photothermal conversion efficiency of 95.19%,Additionally,the resulting composite PCMs also demonstrated long-term thermal sto rage stability and durable structu ral stability after 300 thermal cycles.The proposed collabo rative co-incorporation strategy provides some innovative references for developing next-generation photothermal PCMs in solar energy utilization.
基金Supported by Guangdong Province Rural Science and Technology Commissioner Project(KTP20240693)Zhaoqing University Project(QN202329)+3 种基金Science and Technology Innovation Guidance Project of Zhaoqing(202304038001)Undergraduate Innovation and Entrepreneurship Training Program(202410580011&X202310580120)The Third Batch of Innovation Research Team of Zhaoqing University(05)Quality Engineering and Teaching Reform Project of Zhaoqing University(zlgc202229,zlgc202261).
文摘[Objectives]To make full use of crop rhizosphere microbial resources.[Methods]Illumina NovaSeq sequencing platform was used to analyze the richness and diversity of microbial community structure in rhizosphere soil of rice and maize crops in Baitu Town,Gaoyao District,Zhaoqing City.[Results]A total of 14936 OTUs of bacteria and 1905 OTUs of fungi were obtained from three samples of rice rhizosphere soil,and 13437 OTUs of bacteria and 1413 OTUs of fungi were obtained from three samples of maize rhizosphere soil.The diversity and richness of bacterial communities were higher than those of fungi.There are differences in soil bacterial and fungal communities among different crop samples.The analysis of species with bacteria difference at genus level among crop rhizosphere soil samples showed that 18 genera with significant differences were obtained from 6 samples;species analysis of fungi at the genus level showed that 3 genera with significant differences were obtained from 6 samples.[Conclusions]The research results of this paper have positive significance for the development and utilization of soil resources in Zhaoqing City and the full exploitation of rice and maize rhizosphere microbial resources.
基金2021 Open Project of the Key Research Office of the State Administration of Traditional Chinese Medicine“Treatment of Toxins and Evils in Gastric Cancer,”“Research on the Effect and Related Mechanisms of Jianpi Fuzheng Decoction in Improving Fatigue Related to Advanced Gastric Cancer,”(No.202138)2022 Xuzhou Key R&D Plan(Social Development)Project-Medical and Health Care,“Research on the Clinical Application of Jianpi Fuzheng Decoction in the Treatment of Cancer-Related Fatigue,”(No.:KC22276)。
文摘Objective:To observe the clinical effects of Jianpi Fuzheng Decoction in patients with gastric cancer and cancer-related fatigue(CRF).Methods:Using the random number table method as a reference,68 cases of gastric CRF were randomly divided into two groups.One group served as the control group and received basic treatment,while the other was the observation group.The observation group,in addition to the control group’s treatment,received Jianpi Fuzheng Decoction.The clinical treatment effectiveness,fatigue scores,immune function indicators,and treatment safety were compared between the two groups.Results:The total clinical treatment effectiveness of the observation group and the improvement in immune function indicators after treatment were higher than those of the control group.The fatigue score after treatment was lower in the observation group than in the control group(P<0.05).No serious adverse reactions occurred during the treatment in either group.Conclusion:Jianpi Fuzheng Decoction can enhance the clinical treatment effectiveness for gastric cancer patients with CRF.It facilitates the acceleration of fatigue symptom improvement and immune function enhancement.The medication’s safety is guaranteed,making it worthy of promotion.
文摘This article briefly introduces the weighing device for steel billets in front of the heating furnace of the high-speed wire rod unit,and analyzes and summarizes the problems existing in the original weighing device for steel billets in production and use.Based on on-site installation conditions,design a new weighing method,match a large range weighing sensor,upgrade the automation control of the weighing device,and remotely transmit the billet weighing data to the MES system of the group.The automatic,stable,reliable,and accurate measurement of steel billet raw materials has been achieved,providing important guarantees for the accurate measurement of production line billet and product yield.
基金supported by Fudan Good Practice Program of Teaching and Learning(2019C003).
文摘Background:High-fidelity simulation has been demonstrated to make great progress in learning.However,there is still ongoing exploration on how to fully harness the advantages of this teaching method and enhance its effectiveness.This study conducted high-fidelity simulation in medical nursing based on the Healthcare Simulation Standards of Best Practice and evaluated its effect.Methods:The study was conducted from September 2019 to June 2020.A total of 82 undergraduate nursing students from a university in Shanghai participated in the high-fidelity simulation in medical nursing.The simulation design scale,educational practices in simulation scale,and students’satisfaction and self-confidence were used to evaluate the effect.Results:The mean score of simulation design scale was 4.06±0.63 with the mean scores of all dimensions being over 3.0.The mean score of educational practices in simulation scale was 4.14±0.56 with the mean scores of all dimensions being over 4.0.The mean scores of students’satisfaction and self-confidence were 4.07±0.72 and 3.89±0.58,respectively.Conclusion:Students reported high levels of simulation design and educational practices in simulation.They were also satisfied with learning and reported high levels of self-confidence.Some key points need to be considered so that the learning effects might be optimized.