针对特高压输电线线损与特征参数间关系复杂的特点,提出一种联合聚类优化算法(Canopy-Kmeans)和自适应二次变异差分进化(adaptive second mutation differential evolution,ASMDE)算法改进的径向基神经网络(radial basis function neura...针对特高压输电线线损与特征参数间关系复杂的特点,提出一种联合聚类优化算法(Canopy-Kmeans)和自适应二次变异差分进化(adaptive second mutation differential evolution,ASMDE)算法改进的径向基神经网络(radial basis function neural network,RBFNN)模型,用于特高压输电线线损的预测。通过理论分析确定特高压输电线线损的特征参数,采用Canopy-K-means聚类算法进行聚类,以此确定径向基(radial basis function,RBF)神经网络的隐藏层节点,从而确保RBF神经网络具有较优的隐藏层中心。用特征参数和线损的样本数据训练ASMDE算法优化的RBF神经网络,拟合出线损与特征参数之间复杂的非线性关系。以华中地区某特高压输电线路的历史数据为例,仿真验证了所提方法的实用性和有效性。展开更多
Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entr...Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entry retaining in a thin seam with a large inclined angle. The results show that during exploitation in seams with large inclined angle, rotational subsidence of the main roof under the gob area is small and can maintain balance, so there is no need to provide artificial permanent support resistance for the main roof near the upper side to control rotational subsidence. Obstructed by the dense scrap rail,waste rock from the immediate roof caving slides from the upper gob area to the lower area and fills it,which strikes a balance between the immediate roof under the goaf after it fractures into large pieces and filling waste rocks.展开更多
基金Financial support for this work was provided by the National Natural Science Foundation of China(No.51104176)
文摘Based on the research method of combining simulation analysis with field testing by distinct element process UDEC, we have analyzed the roof deformation and failure laws and roadway support technology of gob-side entry retaining in a thin seam with a large inclined angle. The results show that during exploitation in seams with large inclined angle, rotational subsidence of the main roof under the gob area is small and can maintain balance, so there is no need to provide artificial permanent support resistance for the main roof near the upper side to control rotational subsidence. Obstructed by the dense scrap rail,waste rock from the immediate roof caving slides from the upper gob area to the lower area and fills it,which strikes a balance between the immediate roof under the goaf after it fractures into large pieces and filling waste rocks.