Background: Glucagon-like peptide 2 (GLP-2) is a potent epithelium-specific intestinal growth factor. The aim of this study was to demonstrate the prolonged effect of GLP-2 on the growth performance of weaned pigle...Background: Glucagon-like peptide 2 (GLP-2) is a potent epithelium-specific intestinal growth factor. The aim of this study was to demonstrate the prolonged effect of GLP-2 on the growth performance of weaned piglets. Forty piglets weaned at the age of 28 d with an average BW of 6.8 + 0.4 kg were assigned to four treatments: (i) non- challenged control; (ii) LPS-challenged control; (iii) LPS + low GLP-2; and (iv) LPS + high GLP-2. Piglets in groups (i), (ii), and (iv) were s.c. injected with PBS supplemented with human [Gly2]GLP-21-34 at doses of 0, 2 and 10 nmol/kg BW per day for seven consecutive days. BW, gain:feed ratio (G:F), and plasma GLP-2 levels were determined on d 0 7, and 14 after weaning. Piglets were challenged with i.p. administration of Escherichia coil lipopolysaccharide (LPS) at a dose of 100 pg/kg on d 14 to induce intestinal damage. Twenty-four hours later, intestinal tract samples were collected to assess intestinal morphology and quantify enzyme activity. Results: Plasma GLP-2 levels decreased after weaning, but in the high GLP-2 group, plasma GLP-2 was maintained on d 7 and even increased to a level higher than the preweaning level on d ]4 (P 〈 0.05). High GLP-2 treatment significantly increased the duodenal, jejunal and ileal weight, as well as the gross weight of the small intestine (SI), and the SI weight index (P 〈 0.05). LPS caused villous atrophy and disrupted intestinal morphology in the duodenum, jejunum and ileum. GLP-2 also significantly increased the villus height and the villus height/crypt depth ratio (VCR) of the duodenum, jejunum, and ileum (P 〈 0.05). Histological examination revealed that in GLP-2-treated groups, the integrity of the villus was maintained, and the villus was protected against LPS-induced damage. GLP-2 significantly increased the activity of alkaline phosphatase (AKP), y-glutamyltranspeptidase (y-G-i-), and pancreatic lipase in the duodenum and jejunum (P 〈 0.05). GLP-2 treatment also significantly increased the average daily gain (ADG) and G:F of piglets at 0 to 7, 7 to 14, as well as 0 to14 d (P 〈 0.05), resulting in a significant increase of final 8W in high GLP-2 pigs (P = 0.016). Conclusions: Exogenous GLP-2 improved the growth of weaned piglets and protected them against LPS-induced intestinal damage. These effects may be due to the ability of GLP-2 to promote the secretion of endogenous GLP-2 to stimulate the small intestinal development.展开更多
This study sought to analyze the genotype and gene mutations of human seizure-related gene 6 in 98 patients with idiopathic generalized epilepsy (non-febrile seizures), who were selected from three generations of th...This study sought to analyze the genotype and gene mutations of human seizure-related gene 6 in 98 patients with idiopathic generalized epilepsy (non-febrile seizures), who were selected from three generations of the Chinese Han population living in Shanghai, Zhejiang Province, Wuxi of Jiangsu Province, and Jiangxi Province of Southern China. Twenty-six patients' parents were available as a first-degree relatives group and 100 biologically unrelated healthy controls were collected as the control group. Based on the age of onset and seizure type, the patients were divided into six subgroups. Polymerase chain reaction and DNA direct sequencing analysis showed that the most frequent mutations c. 1249dupC (p.Gly418Argfx31 ) and c.1636A 〉 G (p.Thr546Ala) were detected in some idiopathic generalized epilepsy patients and tl^eir asymptomatic first-degree relatives (30.6% vs. 19.2% and 11.2% vs. 26.9%). A novel mutation c.1807G 〉A (p.Val603Met) was found in a patient with late-onset idiopathic generalized epilepsy. There was no significant difference in the incidence of these three mutations among the different subgroups of idiopathic generalized epilepsy and controls. Thus, further analysis of a larger population is needed to confirm the assumption that human seizure-related gene 6 is a susceptibility gene for idiopathic generalized epilepsy with various sub-syndromes.展开更多
基金supported by the Allotment Planning for Academic and Technical Leading Distinguished Young Scholars ("The molecular mechanism of GLP-2 modulation of the intestinal adaptation of weaned piglets" [No. 2010JQ0043])
文摘Background: Glucagon-like peptide 2 (GLP-2) is a potent epithelium-specific intestinal growth factor. The aim of this study was to demonstrate the prolonged effect of GLP-2 on the growth performance of weaned piglets. Forty piglets weaned at the age of 28 d with an average BW of 6.8 + 0.4 kg were assigned to four treatments: (i) non- challenged control; (ii) LPS-challenged control; (iii) LPS + low GLP-2; and (iv) LPS + high GLP-2. Piglets in groups (i), (ii), and (iv) were s.c. injected with PBS supplemented with human [Gly2]GLP-21-34 at doses of 0, 2 and 10 nmol/kg BW per day for seven consecutive days. BW, gain:feed ratio (G:F), and plasma GLP-2 levels were determined on d 0 7, and 14 after weaning. Piglets were challenged with i.p. administration of Escherichia coil lipopolysaccharide (LPS) at a dose of 100 pg/kg on d 14 to induce intestinal damage. Twenty-four hours later, intestinal tract samples were collected to assess intestinal morphology and quantify enzyme activity. Results: Plasma GLP-2 levels decreased after weaning, but in the high GLP-2 group, plasma GLP-2 was maintained on d 7 and even increased to a level higher than the preweaning level on d ]4 (P 〈 0.05). High GLP-2 treatment significantly increased the duodenal, jejunal and ileal weight, as well as the gross weight of the small intestine (SI), and the SI weight index (P 〈 0.05). LPS caused villous atrophy and disrupted intestinal morphology in the duodenum, jejunum and ileum. GLP-2 also significantly increased the villus height and the villus height/crypt depth ratio (VCR) of the duodenum, jejunum, and ileum (P 〈 0.05). Histological examination revealed that in GLP-2-treated groups, the integrity of the villus was maintained, and the villus was protected against LPS-induced damage. GLP-2 significantly increased the activity of alkaline phosphatase (AKP), y-glutamyltranspeptidase (y-G-i-), and pancreatic lipase in the duodenum and jejunum (P 〈 0.05). GLP-2 treatment also significantly increased the average daily gain (ADG) and G:F of piglets at 0 to 7, 7 to 14, as well as 0 to14 d (P 〈 0.05), resulting in a significant increase of final 8W in high GLP-2 pigs (P = 0.016). Conclusions: Exogenous GLP-2 improved the growth of weaned piglets and protected them against LPS-induced intestinal damage. These effects may be due to the ability of GLP-2 to promote the secretion of endogenous GLP-2 to stimulate the small intestinal development.
基金supported by Shanghai Natural Science Foundation, China, No. ZR1404500
文摘This study sought to analyze the genotype and gene mutations of human seizure-related gene 6 in 98 patients with idiopathic generalized epilepsy (non-febrile seizures), who were selected from three generations of the Chinese Han population living in Shanghai, Zhejiang Province, Wuxi of Jiangsu Province, and Jiangxi Province of Southern China. Twenty-six patients' parents were available as a first-degree relatives group and 100 biologically unrelated healthy controls were collected as the control group. Based on the age of onset and seizure type, the patients were divided into six subgroups. Polymerase chain reaction and DNA direct sequencing analysis showed that the most frequent mutations c. 1249dupC (p.Gly418Argfx31 ) and c.1636A 〉 G (p.Thr546Ala) were detected in some idiopathic generalized epilepsy patients and tl^eir asymptomatic first-degree relatives (30.6% vs. 19.2% and 11.2% vs. 26.9%). A novel mutation c.1807G 〉A (p.Val603Met) was found in a patient with late-onset idiopathic generalized epilepsy. There was no significant difference in the incidence of these three mutations among the different subgroups of idiopathic generalized epilepsy and controls. Thus, further analysis of a larger population is needed to confirm the assumption that human seizure-related gene 6 is a susceptibility gene for idiopathic generalized epilepsy with various sub-syndromes.