期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research on casing deformation prevention technology based on cementing slurry system optimization
1
作者 Yan Yan Meng Cai +3 位作者 Wen-Hai Ma xiao-chuan zhang Li-Hong Han Yong-Hong Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1231-1240,共10页
The casing deformation prevention technology based on the optimization of cement slurry is proposed to reduce the casing deformation of shale oil and gas wells during hydraulic fracturing. In this paper, the fracture ... The casing deformation prevention technology based on the optimization of cement slurry is proposed to reduce the casing deformation of shale oil and gas wells during hydraulic fracturing. In this paper, the fracture mechanism of hollow particles in cement sheath was firstly analyzed by discrete element method, and the effect of hollow particles in cement on casing deformation was investigated by laboratory experiment method. Finally, field test was carried out to verify the improvement effect of the casing deformation based on cement slurry modification. The results show that the formation displacement can be absorbed effectively by hollow particles inside the cement transferring the excessive deformation away from casing. The particles in the uncemented state provide deformation space during formation slipping. The casing with diameter of 139.7 mm could be passed through by bridge plug with the diameter of 99 mm when the mass ratio of particle/cement reaches 1:4. According to the field test feedback, the method based on optimization of cement slurry can effectively reduce the risk of casing deformation, and the recommended range of hollow microbeads content in the cement slurry is between 15% and 25%. 展开更多
关键词 Cement slurry Hollow ceramsite Casing deformation Formation slip Field test
下载PDF
An unequal fracturing stage spacing optimization model for hydraulic fracturing that considers cementing interface integrity 被引量:2
2
作者 Xu Han Fu-Ping Feng +5 位作者 xiao-chuan zhang Jing Cao Jun zhang Yu Suo Yan Yan Mao-Sen Yan 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2165-2186,共22页
Determining reasonable fracturing stage spacing is the key to horizontal well fracturing.Different from traditional stage spacing optimization methods based on the principle of maximum stimulated reservoir volume,in t... Determining reasonable fracturing stage spacing is the key to horizontal well fracturing.Different from traditional stage spacing optimization methods based on the principle of maximum stimulated reservoir volume,in this paper,by considering the integrity of the wellbore interface,a fracture propagation model was established based on displacement discontinuity method and the competition mechanism of multifracture joint expansion,leading to the proposal of an unequal stage spacing optimization model.The results show that in the first stage,the interfacial fractures spread symmetrically along the axis of the central point during that stage,while in the second and subsequent stages,the interfacial fractures of each cluster extend asymmetrically along the left and right sides.There are two kinds of interface connectivity behaviour:in one,the existing fractures first extend and connect within the stage,and in the other,the fractures first extend in the direction close to the previous stage,with the specific behaviour depending on the combined effect of stress shadow and flow competition during hydraulic fracture expansion.The stage spacing is positively correlated with the number of fractures and Young’s modulus of the cement and formation and is negatively correlated with the cluster spacing and horizontal principal stress difference.The sensitivity is the strongest when the Young’s modulus of the cement sheath is 10-20 GPa,and the sensitivity of the horizontal principal stress difference is the weakest. 展开更多
关键词 Hydraulic fracturing Cementing interface Fracture propagation Fracturing stage spacing Wellbore integrity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部