Improving the efficiency of metal/reducible metal oxide interfacial sites for hydrogenation reactions of unsaturated groups(e.g.,C=C and C=O)is a promising yet challenging endeavor.In our study,we developed a Pd/CeO_(...Improving the efficiency of metal/reducible metal oxide interfacial sites for hydrogenation reactions of unsaturated groups(e.g.,C=C and C=O)is a promising yet challenging endeavor.In our study,we developed a Pd/CeO_(2) catalyst by enhancing the oxygen vacancy(O V)concentration in CeO_(2) through high-temperature treatment.This process led to the formation of an interface structure ideal for supporting the hydrogenation of methyl oleate to methyl stearate.Specifi cally,metal Pd^(0) atoms bonded to the O V in defective CeO_(2) formed Pd^(0)-O v-Ce^(3+)interfacial sites,enabling strong electron transfer from CeO_(2) to Pd.The interfacial sites exhibit a synergistic adsorption eff ect on the reaction substrate.Pd^(0) sites promote the adsorption and activation of C=C bonds,while O V preferably adsorbs C=O bonds,mitigating competition with C=C bonds for Pd^(0) adsorption sites.This synergy ensures rapid C=C bond activation and accelerates the attack of active H*species on the semi-hydrogenated intermediate.As a result,our Pd/CeO_(2)-500 catalyst,enriched with Pd^(0)-O v-Ce^(3+)interfacial sites,dem-onstrated excellent hydrogenation activity at just 30℃.The catalyst achieved a Cis-C18:1 conversion rate of 99.8% and a methyl stearate formation rate of 5.7 mol/(h·g metal).This work revealed the interfacial sites for enhanced hydrogenation reactions and provided ideas for designing highly active hydrogenation catalysts.展开更多
背景与目的气道内支架广泛应用于气管狭窄和气管瘘的治疗,但使用气道内支架重建复杂气道的临床数据仍不充足。硅酮支架杂交金属支架重建复杂气道的有效性和安全性。方法纳入无法手术的复杂恶性气道狭窄和气道瘘患者。使用Y型硅酮支架联...背景与目的气道内支架广泛应用于气管狭窄和气管瘘的治疗,但使用气道内支架重建复杂气道的临床数据仍不充足。硅酮支架杂交金属支架重建复杂气道的有效性和安全性。方法纳入无法手术的复杂恶性气道狭窄和气道瘘患者。使用Y型硅酮支架联合金属覆膜支架(杂交支架)重建气道。评价置入支架后6个月的疗效和并发症。结果共纳入23例患者,置入23枚Y型硅酮支架和25枚金属覆膜支架。19例患者(19/23,82.6%)置入支架后症状迅速缓解。支架平均置入(153.43±9.14)d。置入支架后改良呼吸困难指数(modified British Medical Research Council,mMRC)、卡氏功能状态(Karnofsky performance status,KPS)评分和功能状态(performance status,PS)评分显著改善。12例患者带支架生存超过6个月。其余患者肿瘤进展导致6个月内死亡。无支架置入相关死亡及严重并发症。结论杂交支架重建恶性复杂气道疗效确切,耐受良好。展开更多
Enlightened by natural photosynthesis,developing efficient S-scheme heterojunction photocatalysts for deleterious pollutant removal is of prime importance to restore environment.Herein,novel TaON/Bi_(2)WO_(6) S-scheme...Enlightened by natural photosynthesis,developing efficient S-scheme heterojunction photocatalysts for deleterious pollutant removal is of prime importance to restore environment.Herein,novel TaON/Bi_(2)WO_(6) S-scheme heterojunction nanofibers were designed and developed by in-situ growing Bi_(2)WO_(6) nanosheets with oxygen vacancies(OVs)on TaON nanofibers.Thanks to the efficiently spatial charge disassociation and preserved great redox power by the unique S-scheme mechanism and OVs,as well as firmly interfacial contact by the core-shell 1D/2D fibrous hetero-structure via the in-situ growth,the optimized TaON/Bi_(2)WO_(6) heterojunction unveils exceptional visible-light photocatalytic property for abatement of tetracycline(TC),levofloxacin(LEV),and Cr(Ⅵ),respectively by 2.8-fold,1.0-fold,and 1.9-fold enhancement compared to the bare Bi_(2)WO_(6),while maintaining satisfactory stability.Furthermore,the systematic photoreaction tests indicate Ta-ON/Bi_(2)WO_(6) has the high practicality in the elimination of pollutants in aquatic environment.The degradation pathway of tetracycline and intermediate eco-toxicity were determined based on HPLC–MS combined with QSAR calculation,and a possible photocatalytic mechanism was elucidated.This work provides a guideline for designing high-performance TaON-based S-scheme photocatalysts with defects for environment protection.展开更多
Photocatalysis is believed to be one of the best methods to realize sustainable H2 production. However, achieving this through heterogeneous photocatalysis still remains a great challenge owing to the absence of activ...Photocatalysis is believed to be one of the best methods to realize sustainable H2 production. However, achieving this through heterogeneous photocatalysis still remains a great challenge owing to the absence of active sites, sluggish surface reaction kinetics, insufficient charge separation, and a high thermodynamic barrier. Therefore, cocatalysts are necessary and of great significance in boosting photocatalytic H2 generation. This review will focus on the promising and appealing low-cost Ni-based H2-generation cocatalysts as the alternatives for the high-cost and low-abundance noble metal cocatalysts. Special emphasis has been placed on the design principle, modification strategies for further enhancing the activity and stability of Ni-based cocatalysts, and identification of the exact active sites and surface reaction mechanisms. Particularly, four types of modification strategies based on increased light harvesting, enhanced charge separation, strengthened interface interaction, and improved electrocatalytic activity have been thoroughly discussed and compared in detail. This review may open a new avenue for designing highly active and durable Ni-based cocatalysts for photocatalytic H2 generation.展开更多
Nitrogen oxides (NOx) emission during the regeneration ofcoked fluid catalytic cracking (FCC) catalysts is an en- vironmental issue. In order to identify the correlations between nitrogen species in coke and diffe...Nitrogen oxides (NOx) emission during the regeneration ofcoked fluid catalytic cracking (FCC) catalysts is an en- vironmental issue. In order to identify the correlations between nitrogen species in coke and different nitrogen- containing products in tail gas, three coked catalysts with multilayer structural coke molecules were prepared in a fixed bed with model compounds (o-xylene and quinoline) at first. A series of characterization methods were used to analyze coke, including elemental analysis, FT-IR, XPS, and TG-MS. XPS characterization indicates all coked catalysts present two types of nitrogen species and the type with a higher binding energy is related with the inner part nitrogen atoms interacting with acid sites. Due to the stronger adsorption ability on acid sites for basic nitrogen compounds, the multilayer structural coke has unbalanced distribution of carbon and ni- trogen atoms between the inner part and the outer edge, which strongly affects gas product formation. At the early stage of regeneration, oxidation starts from the outer edge and the product NO can be reduced to N2 in high CO concentration. At the later stage, the inner part rich in nitrogen begins to be exposed to 02. At this period, the formation of CO decreases due to lack of carbon atoms, which is not beneficial to the reduction of NO. There- fore, nitrogen species in the inner part of multilayer structural coke contributes more to NOx formation. Based on the multilayer structure model of coke molecule and its oxidation behavior, a possible strategy to control NOx emission was discussed merely from concept.展开更多
The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the...The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the on-orbit performance of our newly developed Sc/Si multi-layer reflecting mirror and the 2k×2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of~3 nm.SUTRI employs a Ritchey-Chrétien optical system with an aperture of 18 cm.The on-orbit observations show that SUTRI images have a field of view of~416×416 and a moderate spatial resolution of~8″without an image stabilization system.The normal cadence of SUTRI images is 30 s and the solar observation time is about16 hr each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period.Approximately15 GB data is acquired each day and made available online after processing.SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of~0.5 MK in the solar atmosphere,which has rarely been sampled by existing solar imagers.SUTRI observations will establish connections between structures in the lower solar atmosphere and corona,and advance our understanding of various types of solar activity such as flares,filament eruptions,coronal jets and coronal mass ejections.展开更多
The advocacy of green chemical industry has led to the development of highly efficient catalysts for direct gas-phase propene epoxidation with green,sustainable and simple essence.The S-1/TS-1@dendritic-SiO_(2) materi...The advocacy of green chemical industry has led to the development of highly efficient catalysts for direct gas-phase propene epoxidation with green,sustainable and simple essence.The S-1/TS-1@dendritic-SiO_(2) material with three-layer core–shell structure was developed and used as the support for Au catalysts,which showed simultaneously fantastic PO formation rate,PO selectivity and stability(over 100 h)for propene epoxidation with H_(2) and O_(2).It is found that silicalite-1(S-1)core and the middle thin layer of TS-1 offer great mass transfer ability,which could be responsible for the excellent stability.The designed dendritic SiO_(2) shell covers part of the acid sites on the external surface of TS-1,inhibiting the side reactions and improving the PO selectivity.Furthermore,three kinds of SiO_(2) shell morphologies(i.e.,dendritic,net,mesoporous shell)were designed,and relationship between shell morphology and catalytic performance was elucidated.The results in this paper harbour tremendous guiding significance for the design of highly efficient epoxidation catalysts.展开更多
The designing of reasonable nanocomposite materials and proper introduction of defect engineering are of great significance for the improvement of the poor electronic conductivity and slow reaction kinetics of mangane...The designing of reasonable nanocomposite materials and proper introduction of defect engineering are of great significance for the improvement of the poor electronic conductivity and slow reaction kinetics of manganese-based compounds. Herein, we report manganese-deficient Mn_(3)O_(4) nanoparticles which grow in-situ on highly conductive carbon nanotubes(CNTs)(denoted as DMOC) as an advanced cathode material for aqueous rechargeable zinc-ion batteries(RAZIBs). According to experimental and calculation results, the DMOC cathode integrates the advantages of enriched Mn defects and small particle size. These features not only enhance electronic conductivity but also create more active site and contribute to fast reaction kinetics. Moreover, the structure of DMOC is maintained during the charging and discharging process, thus benefiting for excellent cycle stability. As a result, the DMOC electrode delivers a high specific capacity of 420.6 m A h g^(-1) at 0.1 A g^(-1) and an excellent cycle life of 2800 cycles at 2.0 A g^(-1) with a high-capacity retention of 84.1%. In addition, the soft-packaged battery assembled with DMOC cathode exhibits long cycle life and high energy density of 146.3 Wh kg^(-1) at 1.0 A g^(-1) . The results are beneficial for the development of Zn/Mn_(3)O_(4) battery for practical energy storage.展开更多
Cracking and low thickness are major obstacles to the high corrosion performance of conversion coating on magnesium alloy.In this work,the ratio of total acidity to p H(TA/p H)was applied as an indicator,and new princ...Cracking and low thickness are major obstacles to the high corrosion performance of conversion coating on magnesium alloy.In this work,the ratio of total acidity to p H(TA/p H)was applied as an indicator,and new principles regarding the design of conversion bath were proposed.The treatment bath should be composed of species that can be categorized into two groups:the first group of species that react with Mg substrate to increase the local p H at the interface;the second group that precipitate and contributes to the growth of coating.The species belong to second group exists in a supersaturated state and its precipitation process is almost independent on the reactions of the species in first group.By this way,a thick and crack-free two-layered conversion coating is obtained.Moreover,the nature of the adjustment of TA/p H and the roles of the oxidizing agent and catalyst were discussed.展开更多
Interactions between materials and electromagnetic irradiations in the microwave frequency are critical for many civil and military applications, such as radar detection, communications, information processing and tra...Interactions between materials and electromagnetic irradiations in the microwave frequency are critical for many civil and military applications, such as radar detection, communications, information processing and transport et al. Dipole rotations or magnetic domain resonance are the mainly traditional mechanisms for microwave absorption. The recent finding of the excellent microwave absorption from hydrogenated TiO2 nanoparticles provides us an alternative approach for achieving such absorption, by manipulating the structural defects inside nanoparticles through hydrogenation. In this study, we demonstrate that the microwave absorption can be not only achieved but fine-tuned with TiO2 nanoparticles thermally treated in a Mg/H2 environment. Their position and efficiency can be effectively controlled by the treating temperature. Specifically, the microwave absorption position shifts to the lower frequency region as the treating temperature increases, and there seems to exist an optimal treating temperature to obtain the maximum efficiency, as the absorbing efficiency first increases, and then decreases, with the increase in treatment temperature. Therefore, this study enriches our knowledge and understanding microwave absorption from TiO2-based nanomaterials which may inspire new ideas on other systems to enhance their performance as well.展开更多
Engineering unique electronic structure of catalyst to boost catalytic performance is of prime scientific and industrial importance.Herein,the identification of intrinsic electronic sensitivity for direct propene epox...Engineering unique electronic structure of catalyst to boost catalytic performance is of prime scientific and industrial importance.Herein,the identification of intrinsic electronic sensitivity for direct propene epoxidation was first achieved over highly stable Au/wormhole-like TS-1 catalyst.Results show that the electron transfer of Au species can be regulated by manipulating the dynamic evolutions and contents of Au valence states,thus resulting in different catalytic performance in 100 h time-on-stream.By DFT calculations,kinetic analysis and multicharacterizations,it is found that the Au^(0) species with higher electronic population can easily transfer more electrons to activate surface O_(2) compared with Au^(1+) and Au^(3+) species.Moreover,there is a positive correlation between Au^(0) content and activity.Based on this correlation,a facile strategy is further proposed to boost Au^(0) percentage,resulting in the reported highest PO formation rate without adding promoters.This work harbors tremendous guiding significance to the design of highly efficient Au/Ti-containing catalyst for propene epoxidation with H_(2) and O_(2).展开更多
In this work,we report the preparation of 1T'-MoS_(2)/g-C_(3)N_(4) nanocage(NC)heterostructure by loading 2D semi-metal noble-metal-free 1T'-MoS_(2) on the g-C_(3)N_(4) nanocages(NCs).DFT calculation and exper...In this work,we report the preparation of 1T'-MoS_(2)/g-C_(3)N_(4) nanocage(NC)heterostructure by loading 2D semi-metal noble-metal-free 1T'-MoS_(2) on the g-C_(3)N_(4) nanocages(NCs).DFT calculation and experimental data have shown that the 1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure has a stronger light absorption capacity and larger specific surface area than pure g-C_(3)N_(4) NCs and g-C_(3)N_(4) nanosheets(NSs),and the presence of the co-catalysts 1T'-MoS_(2) can effectively inhibit the photoinduced carrier recombination.As a result,the 1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure with an optimum 1T'-MoS_(2) loading of 9 wt%displays a hydrogen evolution rate of 1949 mmol h^(-1) g^(-1),162.4,1.2,1.5,1.6 and 1.2 times than pure g-C_(3)N_(4) NCs(12 mmol h^(-1) g^(-1)),Pt/g-C_(3)N_(4) NCs(1615 mmol h^(-1) g^(-1))and Pt/g-C_(3)N_(4) nanosheets(NSs,1297 mmol h^(-1) g^(-1)),1T'-MoS_(2)/g-C_(3)N_(4) nanosheets(1216 mmol h^(-1) g^(-1))and 2H-MoS_(2)/g-C_(3)N_(4) nanocages(1573 mmol h^(-1) g^(-1)),respectively,and exhibits excellent cycle stability.Therefore,1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure is a suitable photocatalyst for green H_(2) production.展开更多
The free-surface Green function method is widely used in solving the radiation or diffraction problems caused by a ship or ocean structure oscillating on the waves. In the context of inviscid potential flow, hydrodyna...The free-surface Green function method is widely used in solving the radiation or diffraction problems caused by a ship or ocean structure oscillating on the waves. In the context of inviscid potential flow, hydrodynamic problems such as multi-body interaction and tank side wall effect cannot be properly dealt with based on the traditional free-surface frequency domain Green function method, in which the water viscosity is omitted and the energy dissipation effect is absent. In this paper, an open-sea Green function with viscous dissipation was presented within the theory ofvisco-potential flow. Then the tank Green function with a partial reflection from the side walls in wave tanks was formulated as a formal sum of open-sea Green functions representing the infinite images between two parallel side walls of the source in the tank. The new far-field characteristics of the tank Green function is vitally important fur improving the validity of side-wall effects evaluation, which can be used in supervising the tank model tests.展开更多
Objective: To investigate the effect of Heme oxygenase-1 (HO-1) gene transfection on the viability of cultured rat islets, and to explore the potential value of HO-1 gene in islet transplantation. Methods:Recombin...Objective: To investigate the effect of Heme oxygenase-1 (HO-1) gene transfection on the viability of cultured rat islets, and to explore the potential value of HO-1 gene in islet transplantation. Methods:Recombinant adenovirus vector containing human HO-1 gene(Ad-HO-1 ) or enhanced green fluorescent protein gene(Ad-EGFP) was generated by using AdEasy system respectively. The rat islets were transfected with Ad-HO-1, Ad-EGFP or blank vector and then cultured for 7 days. Transfection was confirmed by expression of EGFP and human HO-1 protein detected by fluorescence photographs and western blot, respectively. The insulin release upon different concentration of glucose stimulation was detected using insulin radioimmunoassay kit, and stimulation index(SI) was calculated. Glucose-stimulated insulin release was used 'to assess islet viability. Results:Adenovirus vector successfully transferred HO-1 gene to rat islet cells in vitro, and the insulin release upon high level of glucose stimulation and stimulation index (SI) of Ad-HO-1-infected islets were significantly higher than those of Ad-EGFP-infected islets and control islets (P 〈 0.05). Conclusion: Adenovirus-mediated HO-1 gene transfection is a feasible strategy to confer cytoprotection and therefore protect the viability of cultured rat islets.展开更多
This paper addresses the problem of assessing and optimizing the acoustic positioning system for underwater target localization with range measurement.We present a new three-dimensional assessment model to evaluate th...This paper addresses the problem of assessing and optimizing the acoustic positioning system for underwater target localization with range measurement.We present a new three-dimensional assessment model to evaluate the optimal geometric beacon formation whether meets user requirements.For mathematical tractability,it is assumed that the measurements of the range between the target and beacons are corrupted with white Gaussian noise with variance,which is distance-dependent.Then,the relationship between DOP parameters and positioning accuracy can be derived by adopting dilution of precision(DOP)parameters in the assessment model.In addition,the optimal geometric beacon formation yielding the best performance can be achieved via minimizing the values of geometric dilution of precision(GDOP)in the case where the target position is known and fixed.Next,in order to ensure that the estimated positioning accuracy on the region of interest satisfies the precision required by the user,geometric positioning accuracy(GPA),horizontal positioning accuracy(HPA)and vertical positioning accuracy(VPA)are utilized to assess the optimal geometric beacon formation.Simulation examples are designed to illustrate the exactness of the conclusion.Unlike other work that only uses GDOP to optimize the formation and cannot assess the performance of the specified size,this new three-dimensional assessment model can evaluate the optimal geometric beacon formation for each dimension of any point in three-dimensional space,which can provide guidance to optimize the performance of each specified dimension.展开更多
As an alternative clean energy carrier to replace traditional fossil energy,hydrogen energy has been the focus of numerous studies1.Direct conversion of water into hydrogen becomes a sustainable protocol2,3.Many photo...As an alternative clean energy carrier to replace traditional fossil energy,hydrogen energy has been the focus of numerous studies1.Direct conversion of water into hydrogen becomes a sustainable protocol2,3.Many photocatalysts,including organic and inorganic semiconductors,suffer from problems of narrow light absorption,poor charge separation,and insufficient active site4-6.These factors severely limit their practical applications.展开更多
The Solar Upper Transition Region Imager(SUTRI)focuses on the solar transition region to achieve dynamic imaging observation of the upper transition region.In this paper,we report the optical system design,mechanical ...The Solar Upper Transition Region Imager(SUTRI)focuses on the solar transition region to achieve dynamic imaging observation of the upper transition region.In this paper,we report the optical system design,mechanical design,ultrasmooth mirror manufacture and measurement,EUV multilayer film coating,prelaunch installation and calibration for the SUTRI payload at IPOE,Tongji University.Finally,the SUTRI carried by the SATech-01 satellite was successfully set to launch.All functions of this telescope were normal,and the observation results obtained in orbit were consistent with the design.展开更多
基金This work was supported by the National Key Research and Development Program of China(No.2023YFB4203800).
文摘Improving the efficiency of metal/reducible metal oxide interfacial sites for hydrogenation reactions of unsaturated groups(e.g.,C=C and C=O)is a promising yet challenging endeavor.In our study,we developed a Pd/CeO_(2) catalyst by enhancing the oxygen vacancy(O V)concentration in CeO_(2) through high-temperature treatment.This process led to the formation of an interface structure ideal for supporting the hydrogenation of methyl oleate to methyl stearate.Specifi cally,metal Pd^(0) atoms bonded to the O V in defective CeO_(2) formed Pd^(0)-O v-Ce^(3+)interfacial sites,enabling strong electron transfer from CeO_(2) to Pd.The interfacial sites exhibit a synergistic adsorption eff ect on the reaction substrate.Pd^(0) sites promote the adsorption and activation of C=C bonds,while O V preferably adsorbs C=O bonds,mitigating competition with C=C bonds for Pd^(0) adsorption sites.This synergy ensures rapid C=C bond activation and accelerates the attack of active H*species on the semi-hydrogenated intermediate.As a result,our Pd/CeO_(2)-500 catalyst,enriched with Pd^(0)-O v-Ce^(3+)interfacial sites,dem-onstrated excellent hydrogenation activity at just 30℃.The catalyst achieved a Cis-C18:1 conversion rate of 99.8% and a methyl stearate formation rate of 5.7 mol/(h·g metal).This work revealed the interfacial sites for enhanced hydrogenation reactions and provided ideas for designing highly active hydrogenation catalysts.
文摘背景与目的气道内支架广泛应用于气管狭窄和气管瘘的治疗,但使用气道内支架重建复杂气道的临床数据仍不充足。硅酮支架杂交金属支架重建复杂气道的有效性和安全性。方法纳入无法手术的复杂恶性气道狭窄和气道瘘患者。使用Y型硅酮支架联合金属覆膜支架(杂交支架)重建气道。评价置入支架后6个月的疗效和并发症。结果共纳入23例患者,置入23枚Y型硅酮支架和25枚金属覆膜支架。19例患者(19/23,82.6%)置入支架后症状迅速缓解。支架平均置入(153.43±9.14)d。置入支架后改良呼吸困难指数(modified British Medical Research Council,mMRC)、卡氏功能状态(Karnofsky performance status,KPS)评分和功能状态(performance status,PS)评分显著改善。12例患者带支架生存超过6个月。其余患者肿瘤进展导致6个月内死亡。无支架置入相关死亡及严重并发症。结论杂交支架重建恶性复杂气道疗效确切,耐受良好。
文摘Enlightened by natural photosynthesis,developing efficient S-scheme heterojunction photocatalysts for deleterious pollutant removal is of prime importance to restore environment.Herein,novel TaON/Bi_(2)WO_(6) S-scheme heterojunction nanofibers were designed and developed by in-situ growing Bi_(2)WO_(6) nanosheets with oxygen vacancies(OVs)on TaON nanofibers.Thanks to the efficiently spatial charge disassociation and preserved great redox power by the unique S-scheme mechanism and OVs,as well as firmly interfacial contact by the core-shell 1D/2D fibrous hetero-structure via the in-situ growth,the optimized TaON/Bi_(2)WO_(6) heterojunction unveils exceptional visible-light photocatalytic property for abatement of tetracycline(TC),levofloxacin(LEV),and Cr(Ⅵ),respectively by 2.8-fold,1.0-fold,and 1.9-fold enhancement compared to the bare Bi_(2)WO_(6),while maintaining satisfactory stability.Furthermore,the systematic photoreaction tests indicate Ta-ON/Bi_(2)WO_(6) has the high practicality in the elimination of pollutants in aquatic environment.The degradation pathway of tetracycline and intermediate eco-toxicity were determined based on HPLC–MS combined with QSAR calculation,and a possible photocatalytic mechanism was elucidated.This work provides a guideline for designing high-performance TaON-based S-scheme photocatalysts with defects for environment protection.
基金supprted by the National Natural Science Foundation of China(51672089,51672099)Specical Funding on Applied Science and Technology in Guangdong(2017B020238005)the State Key Laboratory of Advanced Technology for Material Synthesis and Processing(Wuhan University of Technology)(2015-KF-7)~~
文摘Photocatalysis is believed to be one of the best methods to realize sustainable H2 production. However, achieving this through heterogeneous photocatalysis still remains a great challenge owing to the absence of active sites, sluggish surface reaction kinetics, insufficient charge separation, and a high thermodynamic barrier. Therefore, cocatalysts are necessary and of great significance in boosting photocatalytic H2 generation. This review will focus on the promising and appealing low-cost Ni-based H2-generation cocatalysts as the alternatives for the high-cost and low-abundance noble metal cocatalysts. Special emphasis has been placed on the design principle, modification strategies for further enhancing the activity and stability of Ni-based cocatalysts, and identification of the exact active sites and surface reaction mechanisms. Particularly, four types of modification strategies based on increased light harvesting, enhanced charge separation, strengthened interface interaction, and improved electrocatalytic activity have been thoroughly discussed and compared in detail. This review may open a new avenue for designing highly active and durable Ni-based cocatalysts for photocatalytic H2 generation.
基金Supported by the National Natural Science Foundation of China(21476263)the National Natural Science Foundation for Young Scholars(21206198)
文摘Nitrogen oxides (NOx) emission during the regeneration ofcoked fluid catalytic cracking (FCC) catalysts is an en- vironmental issue. In order to identify the correlations between nitrogen species in coke and different nitrogen- containing products in tail gas, three coked catalysts with multilayer structural coke molecules were prepared in a fixed bed with model compounds (o-xylene and quinoline) at first. A series of characterization methods were used to analyze coke, including elemental analysis, FT-IR, XPS, and TG-MS. XPS characterization indicates all coked catalysts present two types of nitrogen species and the type with a higher binding energy is related with the inner part nitrogen atoms interacting with acid sites. Due to the stronger adsorption ability on acid sites for basic nitrogen compounds, the multilayer structural coke has unbalanced distribution of carbon and ni- trogen atoms between the inner part and the outer edge, which strongly affects gas product formation. At the early stage of regeneration, oxidation starts from the outer edge and the product NO can be reduced to N2 in high CO concentration. At the later stage, the inner part rich in nitrogen begins to be exposed to 02. At this period, the formation of CO decreases due to lack of carbon atoms, which is not beneficial to the reduction of NO. There- fore, nitrogen species in the inner part of multilayer structural coke contributes more to NOx formation. Based on the multilayer structure model of coke molecule and its oxidation behavior, a possible strategy to control NOx emission was discussed merely from concept.
基金supported by the National Natural Science Foundation of China(NSFC)under Grants 11825301,12003016,12073077the National Key R&D Program of China No.2021YFA0718600+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences with the Grant No.XDA15018400the Youth Innovation Promotion Association of CAS(2023061)。
文摘The Solar Upper Transition Region Imager(SUTRI)onboard the Space Advanced Technology demonstration satellite(SATech-01),which was launched to a Sun-synchronous orbit at a height of~500 km in 2022 July,aims to test the on-orbit performance of our newly developed Sc/Si multi-layer reflecting mirror and the 2k×2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of~3 nm.SUTRI employs a Ritchey-Chrétien optical system with an aperture of 18 cm.The on-orbit observations show that SUTRI images have a field of view of~416×416 and a moderate spatial resolution of~8″without an image stabilization system.The normal cadence of SUTRI images is 30 s and the solar observation time is about16 hr each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period.Approximately15 GB data is acquired each day and made available online after processing.SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of~0.5 MK in the solar atmosphere,which has rarely been sampled by existing solar imagers.SUTRI observations will establish connections between structures in the lower solar atmosphere and corona,and advance our understanding of various types of solar activity such as flares,filament eruptions,coronal jets and coronal mass ejections.
基金supported by the Natural Science Foundation of China(21978325,21776312,22078364)Postgraduate Innovation Engineering(YCX2020044).
文摘The advocacy of green chemical industry has led to the development of highly efficient catalysts for direct gas-phase propene epoxidation with green,sustainable and simple essence.The S-1/TS-1@dendritic-SiO_(2) material with three-layer core–shell structure was developed and used as the support for Au catalysts,which showed simultaneously fantastic PO formation rate,PO selectivity and stability(over 100 h)for propene epoxidation with H_(2) and O_(2).It is found that silicalite-1(S-1)core and the middle thin layer of TS-1 offer great mass transfer ability,which could be responsible for the excellent stability.The designed dendritic SiO_(2) shell covers part of the acid sites on the external surface of TS-1,inhibiting the side reactions and improving the PO selectivity.Furthermore,three kinds of SiO_(2) shell morphologies(i.e.,dendritic,net,mesoporous shell)were designed,and relationship between shell morphology and catalytic performance was elucidated.The results in this paper harbour tremendous guiding significance for the design of highly efficient epoxidation catalysts.
基金financially supported by the National Natural Science Foundation of China (21771084, 21771077, 21621001)the Foundation of Science and Technology Development of Jilin Province,China (20200801004GH)+1 种基金the 111 Project (B17020)financial support by the program for JLU Science and Technology Innovative Research Team (JLUSTIRT)。
文摘The designing of reasonable nanocomposite materials and proper introduction of defect engineering are of great significance for the improvement of the poor electronic conductivity and slow reaction kinetics of manganese-based compounds. Herein, we report manganese-deficient Mn_(3)O_(4) nanoparticles which grow in-situ on highly conductive carbon nanotubes(CNTs)(denoted as DMOC) as an advanced cathode material for aqueous rechargeable zinc-ion batteries(RAZIBs). According to experimental and calculation results, the DMOC cathode integrates the advantages of enriched Mn defects and small particle size. These features not only enhance electronic conductivity but also create more active site and contribute to fast reaction kinetics. Moreover, the structure of DMOC is maintained during the charging and discharging process, thus benefiting for excellent cycle stability. As a result, the DMOC electrode delivers a high specific capacity of 420.6 m A h g^(-1) at 0.1 A g^(-1) and an excellent cycle life of 2800 cycles at 2.0 A g^(-1) with a high-capacity retention of 84.1%. In addition, the soft-packaged battery assembled with DMOC cathode exhibits long cycle life and high energy density of 146.3 Wh kg^(-1) at 1.0 A g^(-1) . The results are beneficial for the development of Zn/Mn_(3)O_(4) battery for practical energy storage.
基金financial support from the National Natural Science Foundation of China(51531007 and 51771050)China Postdoctoral Science Foundation(2019M651128)+1 种基金the National Program for Young Top-notch Professionalsthe Fundamental Research Funds for the Central Universities(N170205002)
文摘Cracking and low thickness are major obstacles to the high corrosion performance of conversion coating on magnesium alloy.In this work,the ratio of total acidity to p H(TA/p H)was applied as an indicator,and new principles regarding the design of conversion bath were proposed.The treatment bath should be composed of species that can be categorized into two groups:the first group of species that react with Mg substrate to increase the local p H at the interface;the second group that precipitate and contributes to the growth of coating.The species belong to second group exists in a supersaturated state and its precipitation process is almost independent on the reactions of the species in first group.By this way,a thick and crack-free two-layered conversion coating is obtained.Moreover,the nature of the adjustment of TA/p H and the roles of the oxidizing agent and catalyst were discussed.
基金support from the U.S. National Science Foundation (DMR-1609061)the College of Arts and Sciences, University of Missouri-Kansas City
文摘Interactions between materials and electromagnetic irradiations in the microwave frequency are critical for many civil and military applications, such as radar detection, communications, information processing and transport et al. Dipole rotations or magnetic domain resonance are the mainly traditional mechanisms for microwave absorption. The recent finding of the excellent microwave absorption from hydrogenated TiO2 nanoparticles provides us an alternative approach for achieving such absorption, by manipulating the structural defects inside nanoparticles through hydrogenation. In this study, we demonstrate that the microwave absorption can be not only achieved but fine-tuned with TiO2 nanoparticles thermally treated in a Mg/H2 environment. Their position and efficiency can be effectively controlled by the treating temperature. Specifically, the microwave absorption position shifts to the lower frequency region as the treating temperature increases, and there seems to exist an optimal treating temperature to obtain the maximum efficiency, as the absorbing efficiency first increases, and then decreases, with the increase in treatment temperature. Therefore, this study enriches our knowledge and understanding microwave absorption from TiO2-based nanomaterials which may inspire new ideas on other systems to enhance their performance as well.
基金supported by the Natural Science Foundation of China(21978325,21776312,22078364)Key research and development plan of Shandong Province(2019RKE28003,2018GGX107005)Fundamental Research Funds for the Central Universities(18CX02014A).
文摘Engineering unique electronic structure of catalyst to boost catalytic performance is of prime scientific and industrial importance.Herein,the identification of intrinsic electronic sensitivity for direct propene epoxidation was first achieved over highly stable Au/wormhole-like TS-1 catalyst.Results show that the electron transfer of Au species can be regulated by manipulating the dynamic evolutions and contents of Au valence states,thus resulting in different catalytic performance in 100 h time-on-stream.By DFT calculations,kinetic analysis and multicharacterizations,it is found that the Au^(0) species with higher electronic population can easily transfer more electrons to activate surface O_(2) compared with Au^(1+) and Au^(3+) species.Moreover,there is a positive correlation between Au^(0) content and activity.Based on this correlation,a facile strategy is further proposed to boost Au^(0) percentage,resulting in the reported highest PO formation rate without adding promoters.This work harbors tremendous guiding significance to the design of highly efficient Au/Ti-containing catalyst for propene epoxidation with H_(2) and O_(2).
基金funding from the National Natural Science Foundation of China (No.51872173)Taishan Scholar Foundation of Shandong Province (No.tsqn201812068)+2 种基金Youth Innovation Technology Project of Higher School in Shandong Province (No.2019KJA013)Science and Technology Special Project of Qingdao City (No.20-3-4-3-nsh)the Opening Fund of State Key Laboratory of Heavy Oil Processing (No.SKLOP202002006)。
文摘In this work,we report the preparation of 1T'-MoS_(2)/g-C_(3)N_(4) nanocage(NC)heterostructure by loading 2D semi-metal noble-metal-free 1T'-MoS_(2) on the g-C_(3)N_(4) nanocages(NCs).DFT calculation and experimental data have shown that the 1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure has a stronger light absorption capacity and larger specific surface area than pure g-C_(3)N_(4) NCs and g-C_(3)N_(4) nanosheets(NSs),and the presence of the co-catalysts 1T'-MoS_(2) can effectively inhibit the photoinduced carrier recombination.As a result,the 1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure with an optimum 1T'-MoS_(2) loading of 9 wt%displays a hydrogen evolution rate of 1949 mmol h^(-1) g^(-1),162.4,1.2,1.5,1.6 and 1.2 times than pure g-C_(3)N_(4) NCs(12 mmol h^(-1) g^(-1)),Pt/g-C_(3)N_(4) NCs(1615 mmol h^(-1) g^(-1))and Pt/g-C_(3)N_(4) nanosheets(NSs,1297 mmol h^(-1) g^(-1)),1T'-MoS_(2)/g-C_(3)N_(4) nanosheets(1216 mmol h^(-1) g^(-1))and 2H-MoS_(2)/g-C_(3)N_(4) nanocages(1573 mmol h^(-1) g^(-1)),respectively,and exhibits excellent cycle stability.Therefore,1T'-MoS_(2)/g-C_(3)N_(4) NC heterostructure is a suitable photocatalyst for green H_(2) production.
基金Supported by NSFC Project(51009037)"111"Program(B07019)
文摘The free-surface Green function method is widely used in solving the radiation or diffraction problems caused by a ship or ocean structure oscillating on the waves. In the context of inviscid potential flow, hydrodynamic problems such as multi-body interaction and tank side wall effect cannot be properly dealt with based on the traditional free-surface frequency domain Green function method, in which the water viscosity is omitted and the energy dissipation effect is absent. In this paper, an open-sea Green function with viscous dissipation was presented within the theory ofvisco-potential flow. Then the tank Green function with a partial reflection from the side walls in wave tanks was formulated as a formal sum of open-sea Green functions representing the infinite images between two parallel side walls of the source in the tank. The new far-field characteristics of the tank Green function is vitally important fur improving the validity of side-wall effects evaluation, which can be used in supervising the tank model tests.
基金This work was supported by National Natural Science Foundation of China, No 30571759
文摘Objective: To investigate the effect of Heme oxygenase-1 (HO-1) gene transfection on the viability of cultured rat islets, and to explore the potential value of HO-1 gene in islet transplantation. Methods:Recombinant adenovirus vector containing human HO-1 gene(Ad-HO-1 ) or enhanced green fluorescent protein gene(Ad-EGFP) was generated by using AdEasy system respectively. The rat islets were transfected with Ad-HO-1, Ad-EGFP or blank vector and then cultured for 7 days. Transfection was confirmed by expression of EGFP and human HO-1 protein detected by fluorescence photographs and western blot, respectively. The insulin release upon different concentration of glucose stimulation was detected using insulin radioimmunoassay kit, and stimulation index(SI) was calculated. Glucose-stimulated insulin release was used 'to assess islet viability. Results:Adenovirus vector successfully transferred HO-1 gene to rat islet cells in vitro, and the insulin release upon high level of glucose stimulation and stimulation index (SI) of Ad-HO-1-infected islets were significantly higher than those of Ad-EGFP-infected islets and control islets (P 〈 0.05). Conclusion: Adenovirus-mediated HO-1 gene transfection is a feasible strategy to confer cytoprotection and therefore protect the viability of cultured rat islets.
基金This work was supported by Natural Science Foundation of Hainan Province of China(No.117212)National Natural Science Foundation of China(Nos.61633008,61374007,61601262 and 61701487)Natural Science Foundation of Heilongjiang Province of China(No.F2017005)and China Scholarship Council.
文摘This paper addresses the problem of assessing and optimizing the acoustic positioning system for underwater target localization with range measurement.We present a new three-dimensional assessment model to evaluate the optimal geometric beacon formation whether meets user requirements.For mathematical tractability,it is assumed that the measurements of the range between the target and beacons are corrupted with white Gaussian noise with variance,which is distance-dependent.Then,the relationship between DOP parameters and positioning accuracy can be derived by adopting dilution of precision(DOP)parameters in the assessment model.In addition,the optimal geometric beacon formation yielding the best performance can be achieved via minimizing the values of geometric dilution of precision(GDOP)in the case where the target position is known and fixed.Next,in order to ensure that the estimated positioning accuracy on the region of interest satisfies the precision required by the user,geometric positioning accuracy(GPA),horizontal positioning accuracy(HPA)and vertical positioning accuracy(VPA)are utilized to assess the optimal geometric beacon formation.Simulation examples are designed to illustrate the exactness of the conclusion.Unlike other work that only uses GDOP to optimize the formation and cannot assess the performance of the specified size,this new three-dimensional assessment model can evaluate the optimal geometric beacon formation for each dimension of any point in three-dimensional space,which can provide guidance to optimize the performance of each specified dimension.
文摘As an alternative clean energy carrier to replace traditional fossil energy,hydrogen energy has been the focus of numerous studies1.Direct conversion of water into hydrogen becomes a sustainable protocol2,3.Many photocatalysts,including organic and inorganic semiconductors,suffer from problems of narrow light absorption,poor charge separation,and insufficient active site4-6.These factors severely limit their practical applications.
基金the National Key R&D Program of China(2022YFF0709101)the National Natural Science Foundation of China(NSFC)under grant Nos.61621001,62105244,12003016 and 12204353.
文摘The Solar Upper Transition Region Imager(SUTRI)focuses on the solar transition region to achieve dynamic imaging observation of the upper transition region.In this paper,we report the optical system design,mechanical design,ultrasmooth mirror manufacture and measurement,EUV multilayer film coating,prelaunch installation and calibration for the SUTRI payload at IPOE,Tongji University.Finally,the SUTRI carried by the SATech-01 satellite was successfully set to launch.All functions of this telescope were normal,and the observation results obtained in orbit were consistent with the design.