This study investigated the use of raspberry extract(RBE) for mitigating ethyl carbamate(EC) accumulation in Chinese rice wine(Huangjiu), a traditional fermented beverage. It focused on the addition of RBE to the ferm...This study investigated the use of raspberry extract(RBE) for mitigating ethyl carbamate(EC) accumulation in Chinese rice wine(Huangjiu), a traditional fermented beverage. It focused on the addition of RBE to the fermentation mash and its effects on EC levels. The results showed a significant reduction in EC production that could be attributed to RBE's role in altering urea and citrulline catabolism and inhibiting arginine metabolism, thus preventing EC precursors from reacting with ethanol. Additionally, RBE enhanced the rice wine's flavor profile, as shown by volatile component and amino acid analysis. This study also explored RBE's impact on the metabolism of arginine by Saccharomyces cerevisiae in a simulated fermentation environment, and found increased arginine, reduced urea and citrulline levels, altered enzyme activities, and gene expression changes in the arginine metabolism and transport pathways. In conclusion, the results clearly demonstrated RBE's efficacy in reducing the EC content in Chinese rice wine, offering valuable insights for EC reduction strategies.展开更多
Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency ...Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration.展开更多
The integration of set-valued ordered rough set models and incremental learning signify a progressive advancement of conventional rough set theory, with the objective of tackling the heterogeneity and ongoing transfor...The integration of set-valued ordered rough set models and incremental learning signify a progressive advancement of conventional rough set theory, with the objective of tackling the heterogeneity and ongoing transformations in information systems. In set-valued ordered decision systems, when changes occur in the attribute value domain, such as adding conditional values, it may result in changes in the preference relation between objects, indirectly leading to changes in approximations. In this paper, we effectively addressed the issue of updating approximations that arose from adding conditional values in set-valued ordered decision systems. Firstly, we classified the research objects into two categories: objects with changes in conditional values and objects without changes, and then conducted theoretical studies on updating approximations for these two categories, presenting approximation update theories for adding conditional values. Subsequently, we presented incremental algorithms corresponding to approximation update theories. We demonstrated the feasibility of the proposed incremental update method with numerical examples and showed that our incremental algorithm outperformed the static algorithm. Ultimately, by comparing experimental results on different datasets, it is evident that the incremental algorithm efficiently reduced processing time. In conclusion, this study offered a promising strategy to address the challenges of set-valued ordered decision systems in dynamic environments.展开更多
In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy...In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions.展开更多
Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment ...Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment methods.Hibernation has the characteristics of low temperature,low metabolism,and hibernation rhythm,as well as protective effects on the nervous,cardiovascular,and motor systems.Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body’s metabolism,lowering the body’s core temperature,and allowing the body to enter a state similar to hibernation.This review introduces artificial hibernation technology,including mild hypothermia treatment technology,central nervous system regulation technology,and artificial hibernation-inducer technology.Upon summarizing the relevant research on artificial hibernation technology in acute brain injury,the research results show that artificial hibernation technology has neuroprotective,anti-inflammatory,and oxidative stress-resistance effects,indicating that it has therapeutic significance in acute brain injury.Furthermore,artificial hibernation technology can alleviate the damage of ischemic stroke,traumatic brain injury,cerebral hemorrhage,cerebral infarction,and other diseases,providing new strategies for treating acute brain injury.However,artificial hibernation technology is currently in its infancy and has some complications,such as electrolyte imbalance and coagulation disorders,which limit its use.Further research is needed for its clinical application.展开更多
Plasma membrane intrinsic proteins(PIPs)are conserved plant aquaporins that transport small molecules across the plasma membrane to trigger instant stress responses and maintain cellular homeostasis under biotic and a...Plasma membrane intrinsic proteins(PIPs)are conserved plant aquaporins that transport small molecules across the plasma membrane to trigger instant stress responses and maintain cellular homeostasis under biotic and abiotic stress.To elucidate their roles in plant immunity to pathogen attack,we characterized the expression patterns,subcellular localizations,and H_(2)O_(2)-transport ability of 11 OsPIPs in rice(Oryza sativa),and identified OsPIP2;6 as necessary for rice disease resistance.OsPIP2;6 resides on the plasma membrane and facilitates cytoplasmic import of the immune signaling molecule H_(2)O_(2).Knockout of OsPIP2;6 increases rice susceptibility to Magnaporthe oryzae,indicating a positive function in plant immunity.OsPIP2;6 interacts with OsPIP2;2,which has been reported to increase rice resistance to pathogens via H_(2)O_(2)transport.Our findings suggest that OsPIP2;6 cooperates with OsPIP2;2 as a defense signal transporter complex during plant–pathogen interaction.展开更多
Besides the rapid retreating trend of Arctic sea-ice extent(SIE),this study found the most outstanding low-frequency variation of SIE to be a 4-6-year periodic variation.Using a clustering analysis algorithm,the SIE i...Besides the rapid retreating trend of Arctic sea-ice extent(SIE),this study found the most outstanding low-frequency variation of SIE to be a 4-6-year periodic variation.Using a clustering analysis algorithm,the SIE in most ice-covered regions was clustered into two special regions:Region-1 around the Barents Sea and Region-2 around the Canadian Basin,which were located on either side of the Arctic Transpolar Drift.Clear 4-6-year periodic variation in these two regions was identified using a novel method called“running linear fitting algorithm”.The rate of temporal variation of the Arctic SIE was related to three driving factors:the regional air temperature,the sea-ice areal flux across the Arctic Transpolar Drift,and the divergence of sea-ice drift.The 4-6-year periodic variation was found to have always been present since 1979,but the SIE responded to different factors under heavy and light ice conditions divided by the year 2005.The joint contribution of the three factors to SIE variation exceeded 83%and 59%in the two regions,respectively,remarkably reflecting their dynamic mechanism.It is proven that the process of El Niño-Southern Oscillation(ENSO)is closely associated with the three factors,being the fundamental source of the 4-6-year periodic variations of Arctic SIE.展开更多
As people live longer,the burden of aging-related brain diseases,especially dementia,is increasing.Brain aging increases the risk of cognitive impairment,which manifests as a progressive loss of neuron function caused...As people live longer,the burden of aging-related brain diseases,especially dementia,is increasing.Brain aging increases the risk of cognitive impairment,which manifests as a progressive loss of neuron function caused by the impairment of synaptic plasticity via disrupting lipid homeostasis.Therefore,supplemental dietary lipids have the potential to prevent brain aging.This review summarizes the important roles of dietary lipids in brain function from both structure and mechanism perspectives.Epidemiological and animal studies have provided evidence of the functions of polyunsaturated fatty acids(PUFAs)in brain health.The results of interventions indicate that phospholipids—including phosphatidylcholine,phosphatidylserine,and plasmalogen—are efficient in alleviating cognitive impairment during aging,with plasmalogen exhibiting higher efficacy than phosphatidylserine.Plasmalogen is a recognized nutrient used in clinical trials due to its special vinyl ether bonds and abundance in the postsynaptic membrane of neurons.Future research should determine the dose-dependent effects of plasmalogen in alleviating brain-aging diseases and should develop extraction and storage procedures for its clinical application.展开更多
Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited b...Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.展开更多
The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging...The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging.The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice.The data indicated the skin aging phenotypes,oxidative stress,skin mitochondrial dysfunction,and intestinal dysbiosis(especially the butyrate and HIF-1a levels decreased)in aging mice.Similarly,fecal microbiota transplantation(FMT)from aging mice rebuild the aging-like phenotypes.Further,we demonstrated MAOS-mediated colonic butyrate-HIF-1a axis homeostasis promoted the entry of butyrate into the skin,upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1a/mitophagy loop in skin of mice.Overall,our study offered a better insights of the effectiveness of alginate oligosaccharides(AOS),promised to become a personalized targeted therapeutic agents,on gut-skin axis disorder inducing skin aging.展开更多
Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate ...Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate of composites was established. Then the upper limit of strain rate, restricted by stress equilibrium and constant loading rate, was rationally estimated and confirmed by tests. Within the achievable range of 0.001/s-895/s, it was found that the strength increased first and subsequently decreased as the strain rate increased. This feature was also reflected by the turning point(579/s) of the bilinear model for strength prediction. The transition in failure mechanism, from local opening damage to completely splitting destruction, was mainly responsible for such strain rate effects. And three major failure modes were summarized under microscopic observations: fiber fracture, inter-fiber fracture, and interface delamination. Finally, by introducing a nonlinear damage variable, a simplified ZWT model was developed to characterize the dynamic mechanical response. Excellent agreement was shown between the experimental and simulated results.展开更多
The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films ...The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.展开更多
The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ab...The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ability to generate various carbonaceous products,but directing selectivity toward one certain product and identifying the real active sites during ECR are still full of challenge.Here,after the incorporation of CdO into CuO,the Cu_(0.5)Cd_(0.5)-O catalyst achieves a 10.3-fold enhancement for CO selectivity in comparison with CuO,and a CO faradic efficiency nearly 90%with a current density around20 mA cm^(-2)could maintain at least 60 h.Interestingly,a wide CO/H_(2)ratio(0.07-10)is reached on Cu_(x)Cd_(1-x)-O catalysts by varying the Cu/Cd ratio,demonstrating the potential of syngas production using such catalysts.The results of ex situ XRD,XPS,and in situ Raman reveal that the real active sites of Cu_(0.5)Cd_(0.5)-O catalysts for CO production during ECR reaction are the reconstructed mixed phases of CuCd alloy and CdCO_(3).In situ FTIR and theoretical calculations further implicate the presence of Cd related species promotes the CO desorption and inhibits the H_(2)evolution,thus leading to an enhanced CO generation.展开更多
This paper examines GaSb short-wavelength infrared detectors employing planar PN junctions. The fabrication was based on the Zn diffusion process and the diffusion temperature was optimized. Characterization revealed ...This paper examines GaSb short-wavelength infrared detectors employing planar PN junctions. The fabrication was based on the Zn diffusion process and the diffusion temperature was optimized. Characterization revealed a 50% cut-off wavelength of 1.73 μm, a maximum detectivity of 8.73 × 10^(10) cm·Hz^(1/2)/W, and a minimum dark current density of 1.02 × 10^(-5) A/cm^(2).Additionally, a maximum quantum efficiency of 60.3% was achieved. Subsequent optimization of fabrication enabled the realization of a 320 × 256 focal plane array that exhibited satisfactory imaging results. Remarkably, the GaSb planar detectors demonstrated potential in low-cost short wavelength infrared imaging, without requiring material epitaxy or deposition.展开更多
Inflammatory bowel disease(IBD)refers to a pair of prevalent conditions(Crohn’s disease and ulcerative colitis)distinguished by persistent inflammation of the large intestine.Procyanidin C1(PCC1)is a natu-rally occur...Inflammatory bowel disease(IBD)refers to a pair of prevalent conditions(Crohn’s disease and ulcerative colitis)distinguished by persistent inflammation of the large intestine.Procyanidin C1(PCC1)is a natu-rally occurring substance derived from grape seeds that has demonstrated notable anti-inflammatory properties.This study examines the potential utility of PCC1 as a treatment for IBD and subsequently examines the host-cell-and microbiome-related mechanisms underlying the detected therapeutic bene-fits.Working with a classic dextran sodium sulfate(DSS)-induced mouse IBD model,we show that PCC1 protects the mucosal barrier and thereby confers strong protective effects against IBD.PCC1 pretreatment resulted in anti-inflammatory effects and protection against multiple pathological phenotypes in the IBD model mice,including reduced weight loss,lower disease activity index(DAI)totals,and enhanced colon size,as well as obviously beneficial effects on the mucosal barrier(e.g.,barrier thickness and activity of mucus-degrading enzymes).We also analyzed the autophagy marker microtubule-associated protein1 light chain 3(LC3)and found that the level of LC3 was significantly elevated in the intestinal epithelial cell samples of the PCC1-pretreatment group as compared with the non-model mice samples.PCC1 altered the fecal microbiome composition,which included elevating the abundance of Akkermansia muci-niphila and Christensenella minuta.Fecal microbiome transplant(FMT)experiments showed that deliver-ing a microbiome from PCC1-treated animals into PCC1-naïve animals conferred protection.Metabolic profiling revealed that both the PCC1-pretreatment and PCC1 FMT groups had elevated levels of the microbiota-derived metabolite valeric acid,and supplementation with this short-chain fatty acid(SCFA)also conferred strong protection against IBD.Finally,inhibitor experiments confirmed that the beneficial effects of valeric acid on the mucus layer are mediated by FOXO1 signaling in the goblet cells of the intestinal epithelium.Beyond showing that PCC1 confers anti-inflammatory effects and protection against IBD by altering the microbiome,our study demonstrates proof of principle for multiple straight-forward interventions(PCC1,FMT,and valeric acid supplementation)for ameliorating mucosal barrier damage to treat IBD.展开更多
Site disorder exists in some practical semiconductors and can significantly impact their intrinsic properties both beneficially and detrimentally.However,the uncertain local order and structure pose a challenge for ex...Site disorder exists in some practical semiconductors and can significantly impact their intrinsic properties both beneficially and detrimentally.However,the uncertain local order and structure pose a challenge for experimental and theoretical research.Especially,it hinders the investigation of the effects of the diverse local atomic environments resulting from the site disorder.We employ the special quasi-random structure method to perform first-principles research on connection between local site disorder and electronic/optical properties,using cationdisordered AgBiS_(2)(rock salt phase)as an example.We predict that cation-disordered AgBiS_(2)has a bandgap ranging from 0.6 to 0.8 eV without spin-orbit coupling and that spin-orbit coupling reduces this by approximately 0.3 eV.We observe the effects of local structural features in the disordered lattice,such as the one-dimensional chain-like aggregation of cations that results in formation of doping energy bands near the band edges,formation and broadening of band-tail states,and the disturbance in the local electrostatic potential,which significantly reduces the bandgap and stability.The influence of these ordered features on the optical properties is confined to alterations in the bandgap and does not markedly affect the joint density of states or optical absorption.Our study provides a research roadmap for exploring the electronic structure of site-disordered semiconductor materials,suggests that the ordered chain-like aggregation of cations is an effective way to regulate the bandgap of AgBiS_(2),and provides insight into how variations in local order associated with processing can affect properties.展开更多
The glymphatic system(GS)is a newly discovered brain anatomy.Its discovery improves our understanding of brain fluid flow and waste removal paths and provides an anatomical basis for the flow of cerebral interstitial ...The glymphatic system(GS)is a newly discovered brain anatomy.Its discovery improves our understanding of brain fluid flow and waste removal paths and provides an anatomical basis for the flow of cerebral interstitial fluid(ISF)and cerebrospinal fluid(CSF).GS occurs through a normal exchange within perivascular space(PVS),facilitating the elimination of metabolic wastes generated by nerve cells from the brain.Therefore,the GS is mainly responsible for the removal of metabolic waste.Reduced GS activity has been observed to be associated with central nervous system disorders such as cerebral small vessel disease(CSVD)and neurodegenerative diseases.Its activity is expected to be an indicator for diagnosing diseases and predicting their prognosis.This review introduces the magnetic resonance imaging(MRI)technology related to the GS suitable for clinical use and the difference in the system's activity in normal and abnormal states.Through a summary of previous research,imaging methods suitable for monitoring the activity of the GS in the clinic were proposed,and their diagnostic effect on different brain disorders was analyzed.This review aims to clarify ideas for the clinical translation of basic research focusing on GS and provide future clinical research directions and perspectives.展开更多
Private universities are one of the forces driving the internationalization of higher education in China.Private universities are taking advantage of the trend to provide education for international students,playing a...Private universities are one of the forces driving the internationalization of higher education in China.Private universities are taking advantage of the trend to provide education for international students,playing an important role in the high-quality development of higher education in China.However,they also face challenges such as insufficient policy support,lack of management experience,and limited enrollment channels.Breakthroughs can be made through methods such as refining content,expanding enrollment channels,and attracting talent.展开更多
<div style="text-align:justify;"> A high-efficiency ridged magnetically insulated transmission line oscillator (RMILO) is proposed and investigated theoretically and numerically in this paper. In the R...<div style="text-align:justify;"> A high-efficiency ridged magnetically insulated transmission line oscillator (RMILO) is proposed and investigated theoretically and numerically in this paper. In the RMILO, ridge-disk vanes are introduced to enhance the power efficiency. Theoretical investigation shows that the ridge-disk can enhance the coupling impedance of the slow-wave structure (SWS), and so enhance the power efficiency. Moreover, the ridge has a weak influence on frequency, so, it influences little on the tunability of the MILO. In simulation, when the applied voltage is increased to 807 kV, the RMILO can get the 3 dB tunable frequency range with 7.6 - 13.9 GHz and the 3 dB tuning bandwidth with 58.6% which has an increase of 27.6% compared with the conventional MILO. So, the tuning performance of the RMILO is more superior. Besides, the RMILO gets the maximum output power of 7.1 GW, the corresponding power efficiency is 22.6% and the frequency is 1.400 GHz. Furthermore, when the applied voltage is increased to 807 kV, high-power microwave with a power of 13.5 GW, frequency of 1.400 GHz, and ef?ciency of 24.5% is generated, which has an increase of 20.2% compared with the conventional MILO. The simulation results con?rm the ones predicted by theoretical analysis. </div>展开更多
基金supported by the National Natural Science Foundation of China(32202125)the Science and Technology Plan Project of Shaoxing City,China(2022A12003)the Zhejiang Provincial Natural Science Foundation,China(LY24C200004).
文摘This study investigated the use of raspberry extract(RBE) for mitigating ethyl carbamate(EC) accumulation in Chinese rice wine(Huangjiu), a traditional fermented beverage. It focused on the addition of RBE to the fermentation mash and its effects on EC levels. The results showed a significant reduction in EC production that could be attributed to RBE's role in altering urea and citrulline catabolism and inhibiting arginine metabolism, thus preventing EC precursors from reacting with ethanol. Additionally, RBE enhanced the rice wine's flavor profile, as shown by volatile component and amino acid analysis. This study also explored RBE's impact on the metabolism of arginine by Saccharomyces cerevisiae in a simulated fermentation environment, and found increased arginine, reduced urea and citrulline levels, altered enzyme activities, and gene expression changes in the arginine metabolism and transport pathways. In conclusion, the results clearly demonstrated RBE's efficacy in reducing the EC content in Chinese rice wine, offering valuable insights for EC reduction strategies.
基金Project supported by the Scientific Research Project of China Three Gorges Corporation(Grant No.202203092)。
文摘Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration.
文摘The integration of set-valued ordered rough set models and incremental learning signify a progressive advancement of conventional rough set theory, with the objective of tackling the heterogeneity and ongoing transformations in information systems. In set-valued ordered decision systems, when changes occur in the attribute value domain, such as adding conditional values, it may result in changes in the preference relation between objects, indirectly leading to changes in approximations. In this paper, we effectively addressed the issue of updating approximations that arose from adding conditional values in set-valued ordered decision systems. Firstly, we classified the research objects into two categories: objects with changes in conditional values and objects without changes, and then conducted theoretical studies on updating approximations for these two categories, presenting approximation update theories for adding conditional values. Subsequently, we presented incremental algorithms corresponding to approximation update theories. We demonstrated the feasibility of the proposed incremental update method with numerical examples and showed that our incremental algorithm outperformed the static algorithm. Ultimately, by comparing experimental results on different datasets, it is evident that the incremental algorithm efficiently reduced processing time. In conclusion, this study offered a promising strategy to address the challenges of set-valued ordered decision systems in dynamic environments.
文摘In recent years, numerous theoretical tandem mass spectrometry prediction methods have been proposed, yet a systematic study and evaluation of their theoretical accuracy limits have not been conducted. If the accuracy of current methods approaches this limit, further exploration of new prediction techniques may become redundant. Conversely, a need for more precise prediction methods or models may be indicated. In this study, we have experimentally analyzed the limits of accuracy at different numbers of ions and parameters using repeated spectral pairs and integrating various similarity metrics. Results show significant achievements in accuracy for backbone ion methods with room for improvement. In contrast, full-spectrum prediction methods exhibit greater potential relative to the theoretical accuracy limit. Additionally, findings highlight the significant impact of normalized collision energy and instrument type on prediction accuracy, underscoring the importance of considering these factors in future theoretical tandem mass spectrometry predictions.
基金supported by the National Defense Science and Technology Outstanding Youth Science Fund Project,No.2021-JCJQ-ZQ-035National Defense Innovation Special Zone Project,No.21-163-12-ZT-006-002-13Key Program of the National Natural Science Foundation of China,No.11932013(all to XuC).
文摘Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment methods.Hibernation has the characteristics of low temperature,low metabolism,and hibernation rhythm,as well as protective effects on the nervous,cardiovascular,and motor systems.Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body’s metabolism,lowering the body’s core temperature,and allowing the body to enter a state similar to hibernation.This review introduces artificial hibernation technology,including mild hypothermia treatment technology,central nervous system regulation technology,and artificial hibernation-inducer technology.Upon summarizing the relevant research on artificial hibernation technology in acute brain injury,the research results show that artificial hibernation technology has neuroprotective,anti-inflammatory,and oxidative stress-resistance effects,indicating that it has therapeutic significance in acute brain injury.Furthermore,artificial hibernation technology can alleviate the damage of ischemic stroke,traumatic brain injury,cerebral hemorrhage,cerebral infarction,and other diseases,providing new strategies for treating acute brain injury.However,artificial hibernation technology is currently in its infancy and has some complications,such as electrolyte imbalance and coagulation disorders,which limit its use.Further research is needed for its clinical application.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2020A1515111101,2022A1515110431).
文摘Plasma membrane intrinsic proteins(PIPs)are conserved plant aquaporins that transport small molecules across the plasma membrane to trigger instant stress responses and maintain cellular homeostasis under biotic and abiotic stress.To elucidate their roles in plant immunity to pathogen attack,we characterized the expression patterns,subcellular localizations,and H_(2)O_(2)-transport ability of 11 OsPIPs in rice(Oryza sativa),and identified OsPIP2;6 as necessary for rice disease resistance.OsPIP2;6 resides on the plasma membrane and facilitates cytoplasmic import of the immune signaling molecule H_(2)O_(2).Knockout of OsPIP2;6 increases rice susceptibility to Magnaporthe oryzae,indicating a positive function in plant immunity.OsPIP2;6 interacts with OsPIP2;2,which has been reported to increase rice resistance to pathogens via H_(2)O_(2)transport.Our findings suggest that OsPIP2;6 cooperates with OsPIP2;2 as a defense signal transporter complex during plant–pathogen interaction.
基金funded by a key project of the National Natural Science Foundation of China called“Research on the Energy Process of Rapid Change of Arctic”(Grant Nos.41941012 and 41976022)the National Natural Science Foundation of China(Grant Nos.42276239 and 42106221)+1 种基金the Natural Science Foundation of Shandong Province(Grant No.ZR2022MD076)Ph.D Foundation“Variation of Arctic Sea Ice Age and Its Relationship with Atmospheric Circulation Field”(Grant No.PY112101).
文摘Besides the rapid retreating trend of Arctic sea-ice extent(SIE),this study found the most outstanding low-frequency variation of SIE to be a 4-6-year periodic variation.Using a clustering analysis algorithm,the SIE in most ice-covered regions was clustered into two special regions:Region-1 around the Barents Sea and Region-2 around the Canadian Basin,which were located on either side of the Arctic Transpolar Drift.Clear 4-6-year periodic variation in these two regions was identified using a novel method called“running linear fitting algorithm”.The rate of temporal variation of the Arctic SIE was related to three driving factors:the regional air temperature,the sea-ice areal flux across the Arctic Transpolar Drift,and the divergence of sea-ice drift.The 4-6-year periodic variation was found to have always been present since 1979,but the SIE responded to different factors under heavy and light ice conditions divided by the year 2005.The joint contribution of the three factors to SIE variation exceeded 83%and 59%in the two regions,respectively,remarkably reflecting their dynamic mechanism.It is proven that the process of El Niño-Southern Oscillation(ENSO)is closely associated with the three factors,being the fundamental source of the 4-6-year periodic variations of Arctic SIE.
基金supported by the National Key Research and Development Program of China(2022YFD2101003)the 111 Project from the Ministry of Education of the People’s Republic of China(B18053).
文摘As people live longer,the burden of aging-related brain diseases,especially dementia,is increasing.Brain aging increases the risk of cognitive impairment,which manifests as a progressive loss of neuron function caused by the impairment of synaptic plasticity via disrupting lipid homeostasis.Therefore,supplemental dietary lipids have the potential to prevent brain aging.This review summarizes the important roles of dietary lipids in brain function from both structure and mechanism perspectives.Epidemiological and animal studies have provided evidence of the functions of polyunsaturated fatty acids(PUFAs)in brain health.The results of interventions indicate that phospholipids—including phosphatidylcholine,phosphatidylserine,and plasmalogen—are efficient in alleviating cognitive impairment during aging,with plasmalogen exhibiting higher efficacy than phosphatidylserine.Plasmalogen is a recognized nutrient used in clinical trials due to its special vinyl ether bonds and abundance in the postsynaptic membrane of neurons.Future research should determine the dose-dependent effects of plasmalogen in alleviating brain-aging diseases and should develop extraction and storage procedures for its clinical application.
基金supported by the National Natural Science Foundation of China(Grant Nos.62321166653,22090044,and 12350410372).Calculations were performed in part at the high-performance computing center of Jilin University.
文摘Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.
文摘The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging.The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice.The data indicated the skin aging phenotypes,oxidative stress,skin mitochondrial dysfunction,and intestinal dysbiosis(especially the butyrate and HIF-1a levels decreased)in aging mice.Similarly,fecal microbiota transplantation(FMT)from aging mice rebuild the aging-like phenotypes.Further,we demonstrated MAOS-mediated colonic butyrate-HIF-1a axis homeostasis promoted the entry of butyrate into the skin,upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1a/mitophagy loop in skin of mice.Overall,our study offered a better insights of the effectiveness of alginate oligosaccharides(AOS),promised to become a personalized targeted therapeutic agents,on gut-skin axis disorder inducing skin aging.
基金the National Science and Technology Major Project(Grant No.2017-VII-0011-0106)Natural Science Foundation of Heilongjiang Province(Grant No.ZD2019A001).
文摘Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate of composites was established. Then the upper limit of strain rate, restricted by stress equilibrium and constant loading rate, was rationally estimated and confirmed by tests. Within the achievable range of 0.001/s-895/s, it was found that the strength increased first and subsequently decreased as the strain rate increased. This feature was also reflected by the turning point(579/s) of the bilinear model for strength prediction. The transition in failure mechanism, from local opening damage to completely splitting destruction, was mainly responsible for such strain rate effects. And three major failure modes were summarized under microscopic observations: fiber fracture, inter-fiber fracture, and interface delamination. Finally, by introducing a nonlinear damage variable, a simplified ZWT model was developed to characterize the dynamic mechanical response. Excellent agreement was shown between the experimental and simulated results.
基金the Natural Science Foundation of Shandong Province(Grant No.ZR2022MA053),the National Natural Science Foundation of China(Grant Nos.11704211,11847233,52301255,12205157,and 12205093)the Funda-mental Research Funds for the Central Universities(Grant No.lzujbky-2022-kb01)+2 种基金China and Germany Postdoctoral Exchange Program(Helmholtz-OCPC)China Postdoctoral Science Foundation(Grant No.2018M632608)Applied Basic Research Project of Qingdao(Grant No.18-2-2-16-jcb).
文摘The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.
基金financially supported by the National Natural Science Foundation of China with grant number of 22172082 and 21978137。
文摘The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ability to generate various carbonaceous products,but directing selectivity toward one certain product and identifying the real active sites during ECR are still full of challenge.Here,after the incorporation of CdO into CuO,the Cu_(0.5)Cd_(0.5)-O catalyst achieves a 10.3-fold enhancement for CO selectivity in comparison with CuO,and a CO faradic efficiency nearly 90%with a current density around20 mA cm^(-2)could maintain at least 60 h.Interestingly,a wide CO/H_(2)ratio(0.07-10)is reached on Cu_(x)Cd_(1-x)-O catalysts by varying the Cu/Cd ratio,demonstrating the potential of syngas production using such catalysts.The results of ex situ XRD,XPS,and in situ Raman reveal that the real active sites of Cu_(0.5)Cd_(0.5)-O catalysts for CO production during ECR reaction are the reconstructed mixed phases of CuCd alloy and CdCO_(3).In situ FTIR and theoretical calculations further implicate the presence of Cd related species promotes the CO desorption and inhibits the H_(2)evolution,thus leading to an enhanced CO generation.
文摘This paper examines GaSb short-wavelength infrared detectors employing planar PN junctions. The fabrication was based on the Zn diffusion process and the diffusion temperature was optimized. Characterization revealed a 50% cut-off wavelength of 1.73 μm, a maximum detectivity of 8.73 × 10^(10) cm·Hz^(1/2)/W, and a minimum dark current density of 1.02 × 10^(-5) A/cm^(2).Additionally, a maximum quantum efficiency of 60.3% was achieved. Subsequent optimization of fabrication enabled the realization of a 320 × 256 focal plane array that exhibited satisfactory imaging results. Remarkably, the GaSb planar detectors demonstrated potential in low-cost short wavelength infrared imaging, without requiring material epitaxy or deposition.
基金supported by the 111 projects of the Education Ministry of China(B18053)the National Natural Science Foundation(32130081)+1 种基金the National Key Research and Development Program of China(2022YFF0710402)the Pinduoduo-China Agricultural University Research Fund(PC2023B01014).
文摘Inflammatory bowel disease(IBD)refers to a pair of prevalent conditions(Crohn’s disease and ulcerative colitis)distinguished by persistent inflammation of the large intestine.Procyanidin C1(PCC1)is a natu-rally occurring substance derived from grape seeds that has demonstrated notable anti-inflammatory properties.This study examines the potential utility of PCC1 as a treatment for IBD and subsequently examines the host-cell-and microbiome-related mechanisms underlying the detected therapeutic bene-fits.Working with a classic dextran sodium sulfate(DSS)-induced mouse IBD model,we show that PCC1 protects the mucosal barrier and thereby confers strong protective effects against IBD.PCC1 pretreatment resulted in anti-inflammatory effects and protection against multiple pathological phenotypes in the IBD model mice,including reduced weight loss,lower disease activity index(DAI)totals,and enhanced colon size,as well as obviously beneficial effects on the mucosal barrier(e.g.,barrier thickness and activity of mucus-degrading enzymes).We also analyzed the autophagy marker microtubule-associated protein1 light chain 3(LC3)and found that the level of LC3 was significantly elevated in the intestinal epithelial cell samples of the PCC1-pretreatment group as compared with the non-model mice samples.PCC1 altered the fecal microbiome composition,which included elevating the abundance of Akkermansia muci-niphila and Christensenella minuta.Fecal microbiome transplant(FMT)experiments showed that deliver-ing a microbiome from PCC1-treated animals into PCC1-naïve animals conferred protection.Metabolic profiling revealed that both the PCC1-pretreatment and PCC1 FMT groups had elevated levels of the microbiota-derived metabolite valeric acid,and supplementation with this short-chain fatty acid(SCFA)also conferred strong protection against IBD.Finally,inhibitor experiments confirmed that the beneficial effects of valeric acid on the mucus layer are mediated by FOXO1 signaling in the goblet cells of the intestinal epithelium.Beyond showing that PCC1 confers anti-inflammatory effects and protection against IBD by altering the microbiome,our study demonstrates proof of principle for multiple straight-forward interventions(PCC1,FMT,and valeric acid supplementation)for ameliorating mucosal barrier damage to treat IBD.
基金supported by the National Natural Science Foundation of China(Grant Nos.62125402,22090044,and 12350410372)the National Key Research and Development Program of China(Grant No.2022YFA1402501)Graduate Innovation Fund of Jilin University(Grant No.2022118)。
文摘Site disorder exists in some practical semiconductors and can significantly impact their intrinsic properties both beneficially and detrimentally.However,the uncertain local order and structure pose a challenge for experimental and theoretical research.Especially,it hinders the investigation of the effects of the diverse local atomic environments resulting from the site disorder.We employ the special quasi-random structure method to perform first-principles research on connection between local site disorder and electronic/optical properties,using cationdisordered AgBiS_(2)(rock salt phase)as an example.We predict that cation-disordered AgBiS_(2)has a bandgap ranging from 0.6 to 0.8 eV without spin-orbit coupling and that spin-orbit coupling reduces this by approximately 0.3 eV.We observe the effects of local structural features in the disordered lattice,such as the one-dimensional chain-like aggregation of cations that results in formation of doping energy bands near the band edges,formation and broadening of band-tail states,and the disturbance in the local electrostatic potential,which significantly reduces the bandgap and stability.The influence of these ordered features on the optical properties is confined to alterations in the bandgap and does not markedly affect the joint density of states or optical absorption.Our study provides a research roadmap for exploring the electronic structure of site-disordered semiconductor materials,suggests that the ordered chain-like aggregation of cations is an effective way to regulate the bandgap of AgBiS_(2),and provides insight into how variations in local order associated with processing can affect properties.
基金supported by grants from the National Natural Science Foundation of China(82327803,82151309,81825012 to X.L,82271952 to J.H.L)the National Key Research and Development Program of China(2022YFC2410005 to J.H.L.).
文摘The glymphatic system(GS)is a newly discovered brain anatomy.Its discovery improves our understanding of brain fluid flow and waste removal paths and provides an anatomical basis for the flow of cerebral interstitial fluid(ISF)and cerebrospinal fluid(CSF).GS occurs through a normal exchange within perivascular space(PVS),facilitating the elimination of metabolic wastes generated by nerve cells from the brain.Therefore,the GS is mainly responsible for the removal of metabolic waste.Reduced GS activity has been observed to be associated with central nervous system disorders such as cerebral small vessel disease(CSVD)and neurodegenerative diseases.Its activity is expected to be an indicator for diagnosing diseases and predicting their prognosis.This review introduces the magnetic resonance imaging(MRI)technology related to the GS suitable for clinical use and the difference in the system's activity in normal and abnormal states.Through a summary of previous research,imaging methods suitable for monitoring the activity of the GS in the clinic were proposed,and their diagnostic effect on different brain disorders was analyzed.This review aims to clarify ideas for the clinical translation of basic research focusing on GS and provide future clinical research directions and perspectives.
文摘Private universities are one of the forces driving the internationalization of higher education in China.Private universities are taking advantage of the trend to provide education for international students,playing an important role in the high-quality development of higher education in China.However,they also face challenges such as insufficient policy support,lack of management experience,and limited enrollment channels.Breakthroughs can be made through methods such as refining content,expanding enrollment channels,and attracting talent.
文摘<div style="text-align:justify;"> A high-efficiency ridged magnetically insulated transmission line oscillator (RMILO) is proposed and investigated theoretically and numerically in this paper. In the RMILO, ridge-disk vanes are introduced to enhance the power efficiency. Theoretical investigation shows that the ridge-disk can enhance the coupling impedance of the slow-wave structure (SWS), and so enhance the power efficiency. Moreover, the ridge has a weak influence on frequency, so, it influences little on the tunability of the MILO. In simulation, when the applied voltage is increased to 807 kV, the RMILO can get the 3 dB tunable frequency range with 7.6 - 13.9 GHz and the 3 dB tuning bandwidth with 58.6% which has an increase of 27.6% compared with the conventional MILO. So, the tuning performance of the RMILO is more superior. Besides, the RMILO gets the maximum output power of 7.1 GW, the corresponding power efficiency is 22.6% and the frequency is 1.400 GHz. Furthermore, when the applied voltage is increased to 807 kV, high-power microwave with a power of 13.5 GW, frequency of 1.400 GHz, and ef?ciency of 24.5% is generated, which has an increase of 20.2% compared with the conventional MILO. The simulation results con?rm the ones predicted by theoretical analysis. </div>