Grain size is a key factor influencing grain weight in rice.In this study,a chromosome segment substitution line(CSSL9-17)was identified,that exhibits a significant reduction in both grain size and weight compared to ...Grain size is a key factor influencing grain weight in rice.In this study,a chromosome segment substitution line(CSSL9-17)was identified,that exhibits a significant reduction in both grain size and weight compared to its donor parent 93-11.Further investigation identified two quantitative trait loci(QTL)on chromosome 11,designated qGW11a and qGW11b,which contribute to 1000-grain weight with an additive effect.LOC_Os11g05690,encoding the amino acid permease OsCAT8,is the target gene of qGW11a.Overexpression of OsCAT8 resulted in decreased grain weight,while OsCAT8 knockout mutants exhibited increased grain weight.The 287-bp located within the OsCAT8 promoter region of 93-11 negatively regulates its activity,which is subsequently correlated with an increase in grain size and weight.These results suggest that OsCAT8 functions as a negative regulator of grain size and grain weight in rice.展开更多
Disruption prediction and mitigation is a crucial topic,especially for future large-scale tokamaks,due to disruption’sconcomitant harmful effects on the devices.On this topic,disruption prediction algorithm takes the...Disruption prediction and mitigation is a crucial topic,especially for future large-scale tokamaks,due to disruption’sconcomitant harmful effects on the devices.On this topic,disruption prediction algorithm takes the responsibility to giveaccurate trigger signal in advance of disruptions,therefore the disruption mitigation system can effectively alleviate theharmful effects.In the past 5 years,a deep learning-based algorithm is developed in HL-2A tokamak.It reaches a truepositive rate of 92.2%,a false positive rate of 2.5%and a total accuracy of 96.1%.Further research is implementedon the basis of this algorithm to solve three key problems,i.e.,the algorithm’s interpretability,real-time capability andtransferability.For the interpretability,HL-2A’s algorithm gives saliency maps indicating the correlation between thealgorithm’s input and output by perturbation analysis.The distribution of correlations shows good coherence with thedisruption causes.For the transferability,a preliminary disruption predictor is successfully developed in HL-2M,a newlybuilt tokamak in China.Although only 44 shots are used as the training set of this algorithm,it gives reasonable outputswith the help of data from HL-2A and J-TEXT.For the real-time capacity,the algorithm is accelerated to deal with an inputslice within 0.3 ms with the help of some adjustments on it and TFLite framework.It is also implemented into the plasmacontrol system and gets an accuracy of 89.0%during online test.This paper gives a global perspective on these results anddiscusses the possible pathways to make HL-2A’s algorithm a more comprehensive solution for future tokamaks.展开更多
Global food security is threatened by rice blast disease caused by the filamentous fungus Magnaporthe oryzae.An understanding of rice resistance mechanisms is fundamental to developing strategies for disease control.I...Global food security is threatened by rice blast disease caused by the filamentous fungus Magnaporthe oryzae.An understanding of rice resistance mechanisms is fundamental to developing strategies for disease control.In this review,we summarize recent advances in pathogen-associated molecular pattern-triggered immunity,effector-triggered immunity,defense regulator-mediated immunity,and effects of nutrient elements on rice blast resistance.We outline strategies used for breeding rice cultivars with improved disease resistance.We also present the major research challenges for rice blast disease resistance and propose approaches for future investigation.展开更多
Osteoporosis(OP)is a common skeletal disease involving low bone mineral density(BMD)that often leads to fragility fracture,and its development is affected by multiple cellular pathologies and associated with marked ep...Osteoporosis(OP)is a common skeletal disease involving low bone mineral density(BMD)that often leads to fragility fracture,and its development is affected by multiple cellular pathologies and associated with marked epigenetic alterations of osteogenic genes.Proper physical exercise is beneficial for bone health and OP and reportedly possesses epigenetic modulating capacities;however,whether the protective effects of exercise on OP involve epigenetic mechanisms is unclear.Here,we report that epigenetic derepression of nuclear factor erythroid derived 2-related factor-2(Nrf2),a master regulator of oxidative stress critically involved in the pathogenesis of OP,mediates the significant osteoprotective effects of running exercise(RE)in a mouse model of OP induced by ovariectomy.We showed that Nrf2 gene knockout(Nfe2l2^(−/−))ovariectomized mice displayed a worse BMD reduction than the controls,identifying Nrf2 as a critical antiosteoporotic factor.Further,femoral Nrf2 was markedly repressed with concomitant DNA methyltransferase(Dnmt)1/Dnmt3a/Dnmt3b elevations and Nrf2 promoter hypermethylation in both patients with OP and ovariectomized mice.However,daily 1-h treadmill RE significantly corrected epigenetic alterations,recovered Nrf2 loss and improved the femur bone mass and trabecular microstructure.Consistently,RE also normalized the adverse expression of major osteogenic factors,including osteoblast/osteoclast markers,Nrf2 downstream antioxidant enzymes and proinflammatory cytokines.More importantly,the RE-conferred osteoprotective effects observed in the wild-type control mice were largely abolished in the Nfe2l2^(−/−)mice.Thus,Nrf2 repression due to aberrant Dnmt elevation and subsequent Nrf2 promoter hypermethylation is likely an important epigenetic feature of the pathogenesis of OP,and Nrf2 derepression is essential for the antiosteoporotic effects of RE.展开更多
Aluminum-ion batteries(AIBs)are promising next-generation batteries systems because of their features of low cost and abundant aluminum resource.However,the inferior rate capacity and poor all-climate performance,espe...Aluminum-ion batteries(AIBs)are promising next-generation batteries systems because of their features of low cost and abundant aluminum resource.However,the inferior rate capacity and poor all-climate performance,especially the decayed capacity under low temperature,are still critical challenges toward high-specific-capacity AIBs.Herein,we report a binder-free and freestanding metal-organic framework-derived FeS_(2)@C/carbon nanotube(FeS_(2)@C/CNT)as a novel all-climate cathode in AIBs working under a wide temperature window between−25 and 50℃ with exceptional flexibility.The resultant cathode not only drastically suppresses the side reaction and volu-metric expansion with high capacity and long-term stability but also greatly enhances the kinetic process in AIBs with remarkable rate capacity(above 151 mAh g^(−1) at 2 A g^(−1))at room temperature.More importantly,to break the bottleneck of the inherently low capacity in graphitic material-based all-climate AIBs,the new hierarchical conductive composite FeS_(2)@C/CNT highly promotes the all-climate performance and delivers as high as 117 mAh g^(−1) capacity even under−25°C.The well-designed metal sulfide electrode with remarkable performance paves a new way toward all-climate and flexible AIBs.展开更多
High-fidelity two-qubit gates are essential for the realization of large-scale quantum computation and simulation.Tunable coupler design is used to reduce the problem of parasitic coupling and frequency crowding in ma...High-fidelity two-qubit gates are essential for the realization of large-scale quantum computation and simulation.Tunable coupler design is used to reduce the problem of parasitic coupling and frequency crowding in manyqubit systems and thus thought to be advantageous. Here we design an extensible 5-qubit system in which center transmon qubit can couple to every four near-neighboring qubits via a capacitive tunable coupler and experimentally demonstrate high-fidelity controlled-phase(CZ) gate by manipulating central qubit and one nearneighboring qubit. Speckle purity benchmarking and cross entropy benchmarking are used to assess the purity fidelity and the fidelity of the CZ gate. The average purity fidelity of the CZ gate is 99.69±0.04% and the average fidelity of the CZ gate is 99.65±0.04%, which means that the control error is about 0.04%. Our work is helpful for resolving many challenges in implementation of large-scale quantum systems.展开更多
The development of high-fidelity two-qubit quantum gates is essential for digital quantum computing.Here,we propose and realize an all-microwave parametric controlled-Z(CZ)gates by coupling strength modulation in a su...The development of high-fidelity two-qubit quantum gates is essential for digital quantum computing.Here,we propose and realize an all-microwave parametric controlled-Z(CZ)gates by coupling strength modulation in a superconducting Transmon qubit system with tunable couplers.After optimizing the design of the tunable coupler together with the control pulse numerically,we experimentally realized a 100 ns CZ gate with high fidelity of 99.38%±0.34%and the control error being 0.1%.We note that our CZ gates are not affected by pulse distortion and do not need pulse correction,providing a solution for the real-time pulse generation in a dynamic quantum feedback circuit.With the expectation of utilizing our all-microwave control scheme to reduce the number of control lines through frequency multiplexing in the future,our scheme draws a blueprint for the high-integrable quantum hardware design.展开更多
In order to explore the seed drop characteristics by aerial seeding equipment,taking aerial seeding for Pinus tabulaeformis as an example,the Gaussian curve fitting and chi-square goodness-of-fit test were carried out...In order to explore the seed drop characteristics by aerial seeding equipment,taking aerial seeding for Pinus tabulaeformis as an example,the Gaussian curve fitting and chi-square goodness-of-fit test were carried out on the data of fallen seed distribution,and the seed distribution models of domestic FB-85 and imported PZLM-18 equipment were established.The seeding performance indexes of the two kinds of equipment were calculated and compared by using the model,the existing problems of domestic equipment and their causes are analyzed,and finally,some suggestions for equipment optimization were put forward.The results indicated that the seed drop of the two kinds of equipment showed the characteristics of dense distribution in the middle and sparse distribution on both sides,and followed the Gaussian distribution as a whole;compared with PZLM-18,FB-85 had better seeding performance,but it also had the problem of uneven seed distribution;in addition to the influence of aircraft flow field,the fishtail structure design of diffuser is another important reason for the uneven seed distribution of domestic equipment;without changing the fishtail structure design,it is suggested that the principle of cross-superposition of two seeding belts should be used to replace a single large-size diffuser with two small-size diffusers,which can reduce the number of seeds in the middle and increase the number of seeds on both sides,so as to improve the uniformity of seed distribution.展开更多
Osteoarthritis(OA)is a major clinical challenge,and effective disease-modifying drugs for OA are still lacking due to the complicated pathology and scattered treatment targets.Effective early treatments are urgently n...Osteoarthritis(OA)is a major clinical challenge,and effective disease-modifying drugs for OA are still lacking due to the complicated pathology and scattered treatment targets.Effective early treatments are urgently needed to prevent OA progression.The excessive amount of transforming growth factorβ(TGFβ)is one of the major causes of synovial fibrosis and subchondral bone sclerosis,and such pathogenic changes in early OA precede cartilage damage.Herein we report a novel strategy of intra-articular sustained-release of pirfenidone(PFD),a clinically-approved TGFβinhibitor,to achieve disease-modifying effects on early OA joints.We found that PFD effectively restored the mineralization in the presence of excessive amount of TGFβ1(as those levels found in patients’synovial fluid).A monthly injection strategy was then designed of using poly lactic-co-glycolic acid(PLGA)microparticles and hyaluronic acid(HA)solution to enable a sustained release of PFD(the“PLGA-PFD+HA”strategy).This strategy effectively regulated OA progression in destabilization of the medial meniscus(DMM)-induced OA mice model,including preventing subchondral bone loss in early OA and subchondral bone sclerosis in late OA,and reduced synovitis and pain with cartilage preservation effects.This finding suggests the promising clinical application of PFD as a novel disease-modifying OA drug.展开更多
Phytohormones play important roles in orchestrating plantimmune responses to pathogen attacks.Strigolactones(SLs),a group of carotenoid-derived phytohormones,modulate diverse biological processes in plants,including s...Phytohormones play important roles in orchestrating plantimmune responses to pathogen attacks.Strigolactones(SLs),a group of carotenoid-derived phytohormones,modulate diverse biological processes in plants,including shoot branching,plant height,root architecture,leaf senescence,seed germination of parasitic plants,and symbiosis of arbuscular mycorrhizal fungi(Burger and Chory,2020).Recently,increasing evidence has indicated potential roles for SLs in regulating responses against biotic stresses,including defense responses against certain pathogenic fungi and bacteria in roots and leaves(Yi et al.,2023).展开更多
Plants are constantly exposed to a vast diversity of micro-organisms.They have accordingly evolved a sophisticated innate immunity system,mainly consisting of pattern-triggered immunity(PTI)and effector-triggered immu...Plants are constantly exposed to a vast diversity of micro-organisms.They have accordingly evolved a sophisticated innate immunity system,mainly consisting of pattern-triggered immunity(PTI)and effector-triggered immunity(ETI)(Jones and Dangl,2006)to combat microbial pathogens.Pattern-recognition receptors(PRRs)on the cell membrane sense immunogenic molecular patterns derived from microbes(pathogen-associated molecular patterns,PAMPs)and the host itself(damage-associated molecular patterns,DAMPs)to activate PTI(Zhou and Zhang,2020;Zhao et al.,2022).展开更多
The extraction of Sc by acid leaching with CaF2 and solvent extraction with P507 from red mud was proposed.The influence of acid leaching and solvent extraction on recovery of Sc was investigated.The CaF2 can obviousl...The extraction of Sc by acid leaching with CaF2 and solvent extraction with P507 from red mud was proposed.The influence of acid leaching and solvent extraction on recovery of Sc was investigated.The CaF2 can obviously improve the leaching efficiency of Sc and reduce the acid consumption.The leaching efficiency of Sc increases from 74%to 92%and the dosage of acid reduces under suitable conditions by adding 5%CaF2.The minerals in red mud can easily be decomposed and leached into the acid solution with CaF2 through analysis of XRD pattern.The particles of red mud become smaller and multihole.The Sc can be selectively extracted with 10%P507 at the pH value of 0.1 from the acid leaching solution.More than 98%of Sc and less than 10%of Al and Fe are extracted.The SC2O3 with purity of 99%is obtained after the process of reverse extraction with NaOH,H2SO4 dissolution,precipitation by oxalic acid and roasting at 750℃.展开更多
Significant achievements have been made in breeding programs for the heavy-panicle-type(HPT)rice(Oryza sativa) in Southwest China. The HPT varieties now exhibit excellent lodging resistance,allowing them to overcome t...Significant achievements have been made in breeding programs for the heavy-panicle-type(HPT)rice(Oryza sativa) in Southwest China. The HPT varieties now exhibit excellent lodging resistance,allowing them to overcome the greater pressures caused by heavy panicles. However, the genetic mechanism of this lodging resistance remains elusive. Here, we isolated a major quantitative trait locus, Panicle Neck Diameter 1(PND1), andidentified the causal gene as GRAIN NUMBER 1 A/CYTOKININ OXIDASE 2(Gn1 A/Os CKX2). The null gn1 a allele from rice line R498(gn1 aR498) improved lodging resistance through increasing the culm diameter and promoting crown root development.Loss-of-function of Gn1 a/Os CKX2 led to cytokinin accumulation in the crown root tip and accelerated the development of adventitious roots. Gene pyramiding between the null gn1 aR498 allele with two gain-of-function alleles, STRONG CULM 2(SCM2)and SCM3, further improved lodging resistance.Moreover, Gn1 a/Os CKX2 had minimal influence on overall rice quality. Our research thus highlights the distinct genetic components of lodging resistance of HPT varieties and provides a strategy for tailormade crop improvement of both yield and lodging resistance in rice.展开更多
Map-based cloning of plant disease resistance (R) genes is time-consuming. Here, we reported the isolation of blast R gene Pid4 using comparative transcriptomic profiling and genome-wide sequence analysis. Pid4 encode...Map-based cloning of plant disease resistance (R) genes is time-consuming. Here, we reported the isolation of blast R gene Pid4 using comparative transcriptomic profiling and genome-wide sequence analysis. Pid4 encodes a coiled-coil nucleotide-binding site leucine-rich repeat(CC-NBS-LRR) protein and is constitutively expressed at diverse developmental stages in the rice variety Digu. The Pid4 protein is localized in both the nucleus and cytoplasm. Introduction of Pid4 into susceptible rice cultivars confers race-specific resistance to leaf and neck blast. Amino acid sequence comparison and blast resistance spectrum tests showed that Pid4 is a novel R gene, different from the previously reported R genes located in the same gene cluster. A Pid4 Indel marker was developed to facilitate the identification of Pid4 in different rice varieties. We demonstrated that a plant R gene can be quickly isolated using transcriptomic profiling coupled with genome-wide sequence analysis.展开更多
To ensure a long-term quantum computational advantage,the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares.Here,we demonstrate a superconduct...To ensure a long-term quantum computational advantage,the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares.Here,we demonstrate a superconducting quantum computing systems Zuchongzhi 2.1,which has 66 qubits in a two-dimensional array in a tunable coupler architecture.The readout fidelity of Zuchongzhi 2.1 is considerably improved to an average of 97.74%.The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling,with a system scale of up to 60 qubits and 24 cycles,and fidelity of FXEB=(3·66±0·345)×10^(-4).The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore[Nature 574,505(2019)]in the classic simulation,and 3 orders of magnitude more difficult than the sampling task on Zuchongzhi 2.0[arXiv:2106.14734(2021)].The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years(about 4·8×104years),while Zuchongzhi 2.1 only takes about 4.2 h,thereby significantly enhancing the quantum computational advantage.展开更多
基金supported by grants from the National Natural Science Foundation of China(32325038)the Postdoctoral Fellowship Program of CPSF(GZB20230499)+1 种基金the Sichuan Science and Technology Program(24NSFSC4494)the Open Project Program(SKL-ZY202212)of State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China.We thank the High-Performance Computing Platform of Sichuan Agricultural University for its support for the analysis of substitution segments in CSSL9-17.
文摘Grain size is a key factor influencing grain weight in rice.In this study,a chromosome segment substitution line(CSSL9-17)was identified,that exhibits a significant reduction in both grain size and weight compared to its donor parent 93-11.Further investigation identified two quantitative trait loci(QTL)on chromosome 11,designated qGW11a and qGW11b,which contribute to 1000-grain weight with an additive effect.LOC_Os11g05690,encoding the amino acid permease OsCAT8,is the target gene of qGW11a.Overexpression of OsCAT8 resulted in decreased grain weight,while OsCAT8 knockout mutants exhibited increased grain weight.The 287-bp located within the OsCAT8 promoter region of 93-11 negatively regulates its activity,which is subsequently correlated with an increase in grain size and weight.These results suggest that OsCAT8 functions as a negative regulator of grain size and grain weight in rice.
基金Project supported by the National MCF R&D Program of China(Grant Nos.2018YFE0302100 and 2019YFE03010003).The authors wish to thank all the members at South Western Institute of Physics for providing data,technique assistance and co-operating during the experiment.
文摘Disruption prediction and mitigation is a crucial topic,especially for future large-scale tokamaks,due to disruption’sconcomitant harmful effects on the devices.On this topic,disruption prediction algorithm takes the responsibility to giveaccurate trigger signal in advance of disruptions,therefore the disruption mitigation system can effectively alleviate theharmful effects.In the past 5 years,a deep learning-based algorithm is developed in HL-2A tokamak.It reaches a truepositive rate of 92.2%,a false positive rate of 2.5%and a total accuracy of 96.1%.Further research is implementedon the basis of this algorithm to solve three key problems,i.e.,the algorithm’s interpretability,real-time capability andtransferability.For the interpretability,HL-2A’s algorithm gives saliency maps indicating the correlation between thealgorithm’s input and output by perturbation analysis.The distribution of correlations shows good coherence with thedisruption causes.For the transferability,a preliminary disruption predictor is successfully developed in HL-2M,a newlybuilt tokamak in China.Although only 44 shots are used as the training set of this algorithm,it gives reasonable outputswith the help of data from HL-2A and J-TEXT.For the real-time capacity,the algorithm is accelerated to deal with an inputslice within 0.3 ms with the help of some adjustments on it and TFLite framework.It is also implemented into the plasmacontrol system and gets an accuracy of 89.0%during online test.This paper gives a global perspective on these results anddiscusses the possible pathways to make HL-2A’s algorithm a more comprehensive solution for future tokamaks.
基金supported by the National Natural Science Foundation of China(NSFC)(32072041)to J.Yinthe NSFC(31825022)to X.Chen+2 种基金the NSFC(31871920)to M.Hethe NSFC(32072407)to X.Zhuthe NSFC(31972258)to L.Zou。
文摘Global food security is threatened by rice blast disease caused by the filamentous fungus Magnaporthe oryzae.An understanding of rice resistance mechanisms is fundamental to developing strategies for disease control.In this review,we summarize recent advances in pathogen-associated molecular pattern-triggered immunity,effector-triggered immunity,defense regulator-mediated immunity,and effects of nutrient elements on rice blast resistance.We outline strategies used for breeding rice cultivars with improved disease resistance.We also present the major research challenges for rice blast disease resistance and propose approaches for future investigation.
基金supported by research grants from the National Nature and Science Foundation of China(NSFC)Key Program(81730067)the NSFC General Program(81670762 and 81970577)the NSFC Major Project(81991514).
文摘Osteoporosis(OP)is a common skeletal disease involving low bone mineral density(BMD)that often leads to fragility fracture,and its development is affected by multiple cellular pathologies and associated with marked epigenetic alterations of osteogenic genes.Proper physical exercise is beneficial for bone health and OP and reportedly possesses epigenetic modulating capacities;however,whether the protective effects of exercise on OP involve epigenetic mechanisms is unclear.Here,we report that epigenetic derepression of nuclear factor erythroid derived 2-related factor-2(Nrf2),a master regulator of oxidative stress critically involved in the pathogenesis of OP,mediates the significant osteoprotective effects of running exercise(RE)in a mouse model of OP induced by ovariectomy.We showed that Nrf2 gene knockout(Nfe2l2^(−/−))ovariectomized mice displayed a worse BMD reduction than the controls,identifying Nrf2 as a critical antiosteoporotic factor.Further,femoral Nrf2 was markedly repressed with concomitant DNA methyltransferase(Dnmt)1/Dnmt3a/Dnmt3b elevations and Nrf2 promoter hypermethylation in both patients with OP and ovariectomized mice.However,daily 1-h treadmill RE significantly corrected epigenetic alterations,recovered Nrf2 loss and improved the femur bone mass and trabecular microstructure.Consistently,RE also normalized the adverse expression of major osteogenic factors,including osteoblast/osteoclast markers,Nrf2 downstream antioxidant enzymes and proinflammatory cytokines.More importantly,the RE-conferred osteoprotective effects observed in the wild-type control mice were largely abolished in the Nfe2l2^(−/−)mice.Thus,Nrf2 repression due to aberrant Dnmt elevation and subsequent Nrf2 promoter hypermethylation is likely an important epigenetic feature of the pathogenesis of OP,and Nrf2 derepression is essential for the antiosteoporotic effects of RE.
基金financial support for Australian Research Council through its Discovery and Linkage Programsperformed in part at Australian Microscopy&Microanalysis Research Facility at the Centre for Microscopy and Microanalysis,the University of Queensland(UQ)+3 种基金The authors also acknowledge National Natural Science Foundation of China(51901100 and 51871119)Jiangsu Provincial Founds for Natural Science Foundation(BK20180015)China Postdoctoral Science Foundation(2018M640481 and 2019T120426)Jiangsu Postdoctoral Research Fund(2019K003)。
文摘Aluminum-ion batteries(AIBs)are promising next-generation batteries systems because of their features of low cost and abundant aluminum resource.However,the inferior rate capacity and poor all-climate performance,especially the decayed capacity under low temperature,are still critical challenges toward high-specific-capacity AIBs.Herein,we report a binder-free and freestanding metal-organic framework-derived FeS_(2)@C/carbon nanotube(FeS_(2)@C/CNT)as a novel all-climate cathode in AIBs working under a wide temperature window between−25 and 50℃ with exceptional flexibility.The resultant cathode not only drastically suppresses the side reaction and volu-metric expansion with high capacity and long-term stability but also greatly enhances the kinetic process in AIBs with remarkable rate capacity(above 151 mAh g^(−1) at 2 A g^(−1))at room temperature.More importantly,to break the bottleneck of the inherently low capacity in graphitic material-based all-climate AIBs,the new hierarchical conductive composite FeS_(2)@C/CNT highly promotes the all-climate performance and delivers as high as 117 mAh g^(−1) capacity even under−25°C.The well-designed metal sulfide electrode with remarkable performance paves a new way toward all-climate and flexible AIBs.
基金the National Key R&D Program of China(Grant No.2017YFA0304300)the Chinese Academy of Sciences+6 种基金Anhui Initiative in Quantum Information TechnologiesTechnology Committee of Shanghai Municipalitythe National Natural Science Foundation of China(Grants Nos.11905217,11774326,and 11905294)the Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)the Natural Science Foundation of Shanghai(Grant No.19ZR1462700)the Key-Area Research and Development Program of Guangdong Provice(Grant No.2020B0303030001)the Youth Talent Lifting Project(Grant No.2020-JCJQ-QT-030)。
文摘High-fidelity two-qubit gates are essential for the realization of large-scale quantum computation and simulation.Tunable coupler design is used to reduce the problem of parasitic coupling and frequency crowding in manyqubit systems and thus thought to be advantageous. Here we design an extensible 5-qubit system in which center transmon qubit can couple to every four near-neighboring qubits via a capacitive tunable coupler and experimentally demonstrate high-fidelity controlled-phase(CZ) gate by manipulating central qubit and one nearneighboring qubit. Speckle purity benchmarking and cross entropy benchmarking are used to assess the purity fidelity and the fidelity of the CZ gate. The average purity fidelity of the CZ gate is 99.69±0.04% and the average fidelity of the CZ gate is 99.65±0.04%, which means that the control error is about 0.04%. Our work is helpful for resolving many challenges in implementation of large-scale quantum systems.
基金the USTC Center for Micro-and Nanoscale Research and Fabrication for supporting the sample fabricationQuantum CTek Co.,Ltd.for supporting the fabrication and the maintenance of room-temperature electronics+7 种基金supported by the National Key R&D Program of China(Grant No.2017YFA0304300)the Chinese Academy of Sciencesthe Anhui Initiative in Quantum Information Technologiesthe Technology Committee of Shanghai Municipalitythe National Natural Science Foundation of China(Grants No.11905217 and 11905294)the Natural Science Foundation of Shanghai(Grant No.19ZR1462700)he Key-Area Research and Development Program of Guangdong Province(Grant No.2020B0303030001)the China Postdoctoral Science Foundation。
文摘The development of high-fidelity two-qubit quantum gates is essential for digital quantum computing.Here,we propose and realize an all-microwave parametric controlled-Z(CZ)gates by coupling strength modulation in a superconducting Transmon qubit system with tunable couplers.After optimizing the design of the tunable coupler together with the control pulse numerically,we experimentally realized a 100 ns CZ gate with high fidelity of 99.38%±0.34%and the control error being 0.1%.We note that our CZ gates are not affected by pulse distortion and do not need pulse correction,providing a solution for the real-time pulse generation in a dynamic quantum feedback circuit.With the expectation of utilizing our all-microwave control scheme to reduce the number of control lines through frequency multiplexing in the future,our scheme draws a blueprint for the high-integrable quantum hardware design.
文摘In order to explore the seed drop characteristics by aerial seeding equipment,taking aerial seeding for Pinus tabulaeformis as an example,the Gaussian curve fitting and chi-square goodness-of-fit test were carried out on the data of fallen seed distribution,and the seed distribution models of domestic FB-85 and imported PZLM-18 equipment were established.The seeding performance indexes of the two kinds of equipment were calculated and compared by using the model,the existing problems of domestic equipment and their causes are analyzed,and finally,some suggestions for equipment optimization were put forward.The results indicated that the seed drop of the two kinds of equipment showed the characteristics of dense distribution in the middle and sparse distribution on both sides,and followed the Gaussian distribution as a whole;compared with PZLM-18,FB-85 had better seeding performance,but it also had the problem of uneven seed distribution;in addition to the influence of aircraft flow field,the fishtail structure design of diffuser is another important reason for the uneven seed distribution of domestic equipment;without changing the fishtail structure design,it is suggested that the principle of cross-superposition of two seeding belts should be used to replace a single large-size diffuser with two small-size diffusers,which can reduce the number of seeds in the middle and increase the number of seeds on both sides,so as to improve the uniformity of seed distribution.
基金supports from all parties during the Covid-19 pandemicsupported by(1)the National Key R&D Program of China(Project No.2019YFA0111900 to YJ),which is financed by the Ministry of Science and Technology of the People’s Republic of China(MOST,China)+3 种基金supported by a grant from the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region,China and the National Natural Science Foundation of China(Project No.N_CUHK483/22 to YJ)the Center for Neuromusculoskeletal Restorative Medicine[CNRM at InnoHK,to YJ,HC,PY]by Innovation and Technology Commission(ITC)of Hong Kong SAR,Chinathe Natural Science Foundation of China(Project No 82302728 to XZ)The Chinese University of Hong Kong.
文摘Osteoarthritis(OA)is a major clinical challenge,and effective disease-modifying drugs for OA are still lacking due to the complicated pathology and scattered treatment targets.Effective early treatments are urgently needed to prevent OA progression.The excessive amount of transforming growth factorβ(TGFβ)is one of the major causes of synovial fibrosis and subchondral bone sclerosis,and such pathogenic changes in early OA precede cartilage damage.Herein we report a novel strategy of intra-articular sustained-release of pirfenidone(PFD),a clinically-approved TGFβinhibitor,to achieve disease-modifying effects on early OA joints.We found that PFD effectively restored the mineralization in the presence of excessive amount of TGFβ1(as those levels found in patients’synovial fluid).A monthly injection strategy was then designed of using poly lactic-co-glycolic acid(PLGA)microparticles and hyaluronic acid(HA)solution to enable a sustained release of PFD(the“PLGA-PFD+HA”strategy).This strategy effectively regulated OA progression in destabilization of the medial meniscus(DMM)-induced OA mice model,including preventing subchondral bone loss in early OA and subchondral bone sclerosis in late OA,and reduced synovitis and pain with cartilage preservation effects.This finding suggests the promising clinical application of PFD as a novel disease-modifying OA drug.
基金supported by NSFC(32072043,32272116,32122012)Fok Ying Tung Education Foundation(171023)Sichuan Science and Technology Program(2023ZYD0086,2023NSFSC0155,2023NSFSC1937,2024NSFTD0022).
文摘Phytohormones play important roles in orchestrating plantimmune responses to pathogen attacks.Strigolactones(SLs),a group of carotenoid-derived phytohormones,modulate diverse biological processes in plants,including shoot branching,plant height,root architecture,leaf senescence,seed germination of parasitic plants,and symbiosis of arbuscular mycorrhizal fungi(Burger and Chory,2020).Recently,increasing evidence has indicated potential roles for SLs in regulating responses against biotic stresses,including defense responses against certain pathogenic fungi and bacteria in roots and leaves(Yi et al.,2023).
基金supported by Innovation Program for Quantum Science and Technology (2021ZD0300200)Shanghai Municipal Science and Technology Major Project (2019SHZDZX01)+13 种基金Special funds from Jinan Science and Technology Bureau and Jinan High Tech Zone Management Committeethe Chinese Academy of Sciences (CAS)Anhui Initiative in Quantum Information TechnologiesTechnology Committee of Shanghai MunicipalityNatural Science Foundation of Shandong Province (ZR202209080019)Key-Area Research and Development Program of Guangdong Provice (2020B0303030001)supported in part by the Japanese MEXT Quantum Leap Flagship Program (MEXT Q-LEAP,JPMXS0118069605)the support from the Youth Talent Lifting Project (2020-JCJQ-QT-030)the National Natural Science Foundation of China (12274464,and 11905294)China Postdoctoral Science Foundationthe Open Research Fund from State Key Laboratory of High Performance Computing of China (201901-01)supported by Shanghai Rising-Star Program (23QA1410000)the Youth Innovation Promotion Association of CAS (2022460)the support from THE XPLORER PRIZE。
基金supported by the National Natural Science Foundation of China(91836303 and 11805197)the National Key R&D Program of China+2 种基金the Chinese Academy of Sciencesthe Anhui Initiative in Quantum Information Technologiesthe Science and Technology Commission of Shanghai Municipality(2019SHZDZX01)。
基金supported by funds from the National Key Research and Development Program of China(2021YFA1300702)the National Natural Science Foundation of China(NSFC)(31825022 and 32121003)+3 种基金the Soft Science Project of Science and Technology Department from Sichuan Province(22RKX0800)the Natural Science Foundation of Sichuan Province(23NSFSC0007)supported by funds from NSFC(32072407)the State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China,Sichuan Agricultural University(SKLZY202215).
文摘Plants are constantly exposed to a vast diversity of micro-organisms.They have accordingly evolved a sophisticated innate immunity system,mainly consisting of pattern-triggered immunity(PTI)and effector-triggered immunity(ETI)(Jones and Dangl,2006)to combat microbial pathogens.Pattern-recognition receptors(PRRs)on the cell membrane sense immunogenic molecular patterns derived from microbes(pathogen-associated molecular patterns,PAMPs)and the host itself(damage-associated molecular patterns,DAMPs)to activate PTI(Zhou and Zhang,2020;Zhao et al.,2022).
基金Project supported by the National Natural Science Foundation of China(51804103,51904097)Fundamental Research Funds for the Universities of Henan Province(NSFRF180319)the Scientific and Technological Project of Henan Province(172102310679,182102310846)。
文摘The extraction of Sc by acid leaching with CaF2 and solvent extraction with P507 from red mud was proposed.The influence of acid leaching and solvent extraction on recovery of Sc was investigated.The CaF2 can obviously improve the leaching efficiency of Sc and reduce the acid consumption.The leaching efficiency of Sc increases from 74%to 92%and the dosage of acid reduces under suitable conditions by adding 5%CaF2.The minerals in red mud can easily be decomposed and leached into the acid solution with CaF2 through analysis of XRD pattern.The particles of red mud become smaller and multihole.The Sc can be selectively extracted with 10%P507 at the pH value of 0.1 from the acid leaching solution.More than 98%of Sc and less than 10%of Al and Fe are extracted.The SC2O3 with purity of 99%is obtained after the process of reverse extraction with NaOH,H2SO4 dissolution,precipitation by oxalic acid and roasting at 750℃.
基金supported by the National Natural Science Foundation of China(92535301)Sichuan Science and Technology Program(2021YJ0501)。
文摘Significant achievements have been made in breeding programs for the heavy-panicle-type(HPT)rice(Oryza sativa) in Southwest China. The HPT varieties now exhibit excellent lodging resistance,allowing them to overcome the greater pressures caused by heavy panicles. However, the genetic mechanism of this lodging resistance remains elusive. Here, we isolated a major quantitative trait locus, Panicle Neck Diameter 1(PND1), andidentified the causal gene as GRAIN NUMBER 1 A/CYTOKININ OXIDASE 2(Gn1 A/Os CKX2). The null gn1 a allele from rice line R498(gn1 aR498) improved lodging resistance through increasing the culm diameter and promoting crown root development.Loss-of-function of Gn1 a/Os CKX2 led to cytokinin accumulation in the crown root tip and accelerated the development of adventitious roots. Gene pyramiding between the null gn1 aR498 allele with two gain-of-function alleles, STRONG CULM 2(SCM2)and SCM3, further improved lodging resistance.Moreover, Gn1 a/Os CKX2 had minimal influence on overall rice quality. Our research thus highlights the distinct genetic components of lodging resistance of HPT varieties and provides a strategy for tailormade crop improvement of both yield and lodging resistance in rice.
基金supported by the National Key Research and Development Program of China (2016YFD0100600)the Transgenic Projects from the Chinese Ministry of Agriculture (2014ZX0800903B)+12 种基金supported by the Transgenic Projects from the Chinese Ministry of Agriculture (2016ZX08001002)the National Natural Science Foundation of China (31571994 and 31772153)supported by the National Natural Science Foundation of China (31772152)supported by the National Natural Science Foundation of China (31701779)supported by the National Natural Science Foundation of China (31601290)the Program for New Century Excellent Talents in University from the Ministry of Education in Chinathe “Hundred Talents Plan” Foundationthe Youth Foundation (13QNJJ0076)supported by NSF PGRP IOS 1237975NIH GM59962USDA NIFA 2017-6701326590the Open Research Fund of State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center) (2017KF01)the project funded by China Postdoctoral Science Foundation (2017M612984)
文摘Map-based cloning of plant disease resistance (R) genes is time-consuming. Here, we reported the isolation of blast R gene Pid4 using comparative transcriptomic profiling and genome-wide sequence analysis. Pid4 encodes a coiled-coil nucleotide-binding site leucine-rich repeat(CC-NBS-LRR) protein and is constitutively expressed at diverse developmental stages in the rice variety Digu. The Pid4 protein is localized in both the nucleus and cytoplasm. Introduction of Pid4 into susceptible rice cultivars confers race-specific resistance to leaf and neck blast. Amino acid sequence comparison and blast resistance spectrum tests showed that Pid4 is a novel R gene, different from the previously reported R genes located in the same gene cluster. A Pid4 Indel marker was developed to facilitate the identification of Pid4 in different rice varieties. We demonstrated that a plant R gene can be quickly isolated using transcriptomic profiling coupled with genome-wide sequence analysis.
基金the National Key R&D Program of China(2017YFA0304300),the Chinese Academy of Sciences,Anhui Initiative in Quantum Information Technologies,Technology Committee of Shanghai Municipality,National Natural Science Foundation of China(11905217,11774326,and 11905294)‘Shang-hai Municipal Science and Technology Major Project(2019SHZDZX01)’Natural Science Foundation of Shanghai(19ZR1462700)‘Key-Area Research and Development Program of Guangdong Province(2020B0303030001)’the Youth Talent Lifting Project(2020-JCJQ-QT-030)。
文摘To ensure a long-term quantum computational advantage,the quantum hardware should be upgraded to withstand the competition of continuously improved classical algorithms and hardwares.Here,we demonstrate a superconducting quantum computing systems Zuchongzhi 2.1,which has 66 qubits in a two-dimensional array in a tunable coupler architecture.The readout fidelity of Zuchongzhi 2.1 is considerably improved to an average of 97.74%.The more powerful quantum processor enables us to achieve larger-scale random quantum circuit sampling,with a system scale of up to 60 qubits and 24 cycles,and fidelity of FXEB=(3·66±0·345)×10^(-4).The achieved sampling task is about 6 orders of magnitude more difficult than that of Sycamore[Nature 574,505(2019)]in the classic simulation,and 3 orders of magnitude more difficult than the sampling task on Zuchongzhi 2.0[arXiv:2106.14734(2021)].The time consumption of classically simulating random circuit sampling experiment using state-of-the-art classical algorithm and supercomputer is extended to tens of thousands of years(about 4·8×104years),while Zuchongzhi 2.1 only takes about 4.2 h,thereby significantly enhancing the quantum computational advantage.