Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the meth...Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the methods in defect controlcurrently face challenges with overly large operational areas and a lack of precision in targeting specific defects. Therefore,we propose a new method for the precise and universal defect healing of TMD materials, integrating real-time imaging withscanning transmission electron microscopy (STEM). This method employs electron beam irradiation to stimulate the diffusionmigration of surface-adsorbed adatoms on TMD materials grown by low-temperature molecular beam epitaxy (MBE),and heal defects within the diffusion range. This approach covers defect repairs ranging from zero-dimensional vacancydefects to two-dimensional grain orientation alignment, demonstrating its universality in terms of the types of samples anddefects. These findings offer insights into the use of atomic-level focused electron beams at appropriate voltages in STEMfor defect healing, providing valuable experience for achieving atomic-level precise fabrication of TMD materials.展开更多
Titanium diboride(TiB_(2))is an effective grain refiner of Al alloys in the industry that facilitates casting processes by forming uniformly refined microstructures.Although our understanding of the underlying refinem...Titanium diboride(TiB_(2))is an effective grain refiner of Al alloys in the industry that facilitates casting processes by forming uniformly refined microstructures.Although our understanding of the underlying refinement mechanisms has advanced,the atomic kinetics of heterogeneous nucleation of Al on TiB2 remains unknown.Here,we report atomic-scale observations of the heterogeneous nucleation and growth kinetics of Al on self-formed TiB_(2) particles by in situ heating of undercooled Al-5Ti-1B films.We demonstrate that an ordered Al monolayer forms on the Ti-terminated{0001}TiB_(2) surface;then,the surrounding Al atoms are initiated to form an island-shaped Al nucleus with face-centered cubic{111}stacking without the assistance of a Ti-rich buffer layer.The interfacial lattice mismatch between{111}Al and{0001}TiB_(2) causes remarkable out-of-plane strain that decreases gradually with Al nucleus layers increasing to 6 atomic layers.The elastic strain energy originating from this interfacial strain increases the free energy of the Al/TiB2 heterostructure,hence impeding the rapid growth of the Al nucleus.We found that TiB2 particles stabilize the Al nuclei rather than activating their free growth into grains when the experimental undercoolingΔT is lower than the onset undercoolingΔT fg in Greer's free growth model.Our findings provide an atomic-scale physical image of the heterogeneous nucleation and growth mechanisms of Al with inoculator participation and elucidate the strain-dependent growth kinetics of Al nuclei.展开更多
基金the Beijing Natural Science Foundation(Grant Nos.JQ24010 and Z220020)the Fundamental Research Funds for the Central Universities,and the National Natural Science Foundation of China(Grant No.52273279)Project supported by the Electron Microscopy Laboratory of Peking University,China for the use of Nion U-HERMES200 scanning transmission electron microscopy.We thank Materials Processing and Analysis Center,Peking University,for assistance with TEM characterization.The electron microscopy work was through a user project at Center of Oak Ridge National Laboratory(ORNL)for Nanophase Materials Sciences(CNMS),which is a DOE Office of Science User Facility.
文摘Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the methods in defect controlcurrently face challenges with overly large operational areas and a lack of precision in targeting specific defects. Therefore,we propose a new method for the precise and universal defect healing of TMD materials, integrating real-time imaging withscanning transmission electron microscopy (STEM). This method employs electron beam irradiation to stimulate the diffusionmigration of surface-adsorbed adatoms on TMD materials grown by low-temperature molecular beam epitaxy (MBE),and heal defects within the diffusion range. This approach covers defect repairs ranging from zero-dimensional vacancydefects to two-dimensional grain orientation alignment, demonstrating its universality in terms of the types of samples anddefects. These findings offer insights into the use of atomic-level focused electron beams at appropriate voltages in STEMfor defect healing, providing valuable experience for achieving atomic-level precise fabrication of TMD materials.
基金financially supported by the National Natural Science Foundation of China(Nos.52173224,51821001,52130105,and 52273230)the Natural Science Foundation of Shanghai(No.21ZR1431200)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘Titanium diboride(TiB_(2))is an effective grain refiner of Al alloys in the industry that facilitates casting processes by forming uniformly refined microstructures.Although our understanding of the underlying refinement mechanisms has advanced,the atomic kinetics of heterogeneous nucleation of Al on TiB2 remains unknown.Here,we report atomic-scale observations of the heterogeneous nucleation and growth kinetics of Al on self-formed TiB_(2) particles by in situ heating of undercooled Al-5Ti-1B films.We demonstrate that an ordered Al monolayer forms on the Ti-terminated{0001}TiB_(2) surface;then,the surrounding Al atoms are initiated to form an island-shaped Al nucleus with face-centered cubic{111}stacking without the assistance of a Ti-rich buffer layer.The interfacial lattice mismatch between{111}Al and{0001}TiB_(2) causes remarkable out-of-plane strain that decreases gradually with Al nucleus layers increasing to 6 atomic layers.The elastic strain energy originating from this interfacial strain increases the free energy of the Al/TiB2 heterostructure,hence impeding the rapid growth of the Al nucleus.We found that TiB2 particles stabilize the Al nuclei rather than activating their free growth into grains when the experimental undercoolingΔT is lower than the onset undercoolingΔT fg in Greer's free growth model.Our findings provide an atomic-scale physical image of the heterogeneous nucleation and growth mechanisms of Al with inoculator participation and elucidate the strain-dependent growth kinetics of Al nuclei.