Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results sho...Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.展开更多
Solid solution strengthening(SSS)is one of the main contributions to the desired tensile properties of nickel-based superalloys for turbine blades and disks.The value of SSS can be calculated by using Fleischer’s and...Solid solution strengthening(SSS)is one of the main contributions to the desired tensile properties of nickel-based superalloys for turbine blades and disks.The value of SSS can be calculated by using Fleischer’s and Labusch’s theories,while the model parameters are incorporated without fitting to experimental data of complex alloys.In thiswork,four diffusionmultiples consisting of multicomponent alloys and pure Niare prepared and characterized.The composition and microhardness of singleγphase regions in samples are used to quantify the SSS.Then,Fleischer’s and Labusch’s theories are examined based on high-throughput experiments,respectively.The fitted solid solution coefficients are obtained based on Labusch’s theory and experimental data,indicating higher accuracy.Furthermore,six machine learning algorithms are established,providing a more accurate prediction compared with traditional physical models and fitted physical models.The results show that the coupling of highthroughput experiments and machine learning has great potential in the field of performance prediction and alloy design.展开更多
Refurbishment of thermal barrier coating(TBC)has become a valuable technique to prolong the service life of high-temperature components.This study investigates the effect of the refurbishment process(coating removal a...Refurbishment of thermal barrier coating(TBC)has become a valuable technique to prolong the service life of high-temperature components.This study investigates the effect of the refurbishment process(coating removal and recoating)on the microstructure evolution and physical properties of TBC,including oxidation characteristics,element diffusion behavior,and crack failure mechanisms.The results showed that a certain amount of interdiffusion zone(IDZ)with Cr-rich would be retained in DD6 superalloy substrate after coating removal.The microstructure of the refurbished specimens showed equiaxedβ-NiAl phases,while the ordinary specimens have elongated grain shapes with a high aspect ratio.Moreover,mixed oxides in the refurbished TBC specimens were earlier observed during cyclic oxidation,with a greater thickness compared to ordinary TBC,due to the influence of BC layer phase sizes.The growth mechanism of thermally grown oxide(TGO-Al_(2)O_(3)layer)in the refurbished TBC specimens was also different,resulting from the different mechanisms of mixed oxides growth.Furthermore,under cyclic oxidation with water quenching at 1100℃,the cracks in the refurbished specimen tend to occur in the mixed oxides layer,while the cracks in the ordinary specimen occur in the top coat(TC)layer,attributing to the earlier and thicker mixed oxides layer formed in refurbished specimens.展开更多
Calcium-magnesium-alumino-silicate(CMAS)corrosion is a critical factor which causes the failure of thermal barrier coating(TBC).CMAS attack significantly alters the temperature and stress fields in TBC,resulting in th...Calcium-magnesium-alumino-silicate(CMAS)corrosion is a critical factor which causes the failure of thermal barrier coating(TBC).CMAS attack significantly alters the temperature and stress fields in TBC,resulting in their delamination or spallation.In this work,the evolution process of TBC prepared by suspension plasma spraying(SPS)under CMAS attack is investigated.The CMAS corrosion leads to the formation of the reaction layer and subsequent bending of TBC.Based on the observations,a corrosion model is proposed to describe the generation and evolution of the reaction layer and bending of TBC.Then,numerical simulations are performed to investigate the corrosion process of free-standing TBC and the complete TBC system under CMAS attack.The corrosion model constructs a bridge for connecting two numerical models.The results show that the CMAS corrosion has a significant influence on the stress field,such as the peak stress,whereas it has little influence on the steady-state temperature field.The peak of stress increases with holding time,which increases the risk of the rupture of TBC.The Mises stress increases nonlinearly along the thick direction of the reaction layer.Furthermore,in the traditional failure zone,such as the interface of the top coat and bond coat,the stress obviously changes during CMAS corrosion.展开更多
基金supported by the National Science and Technology Major Project(J2019-IV-0003-0070)the National Natural Science Foundation of China(Grant No.12102320)+1 种基金the Advanced Aviation Power Innovation Workstation Project(HKCX2019-01-003)China Postdoc-toral Science Foundation(2021M692571).
文摘Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.
基金supported by National Science and Technology Major Project (J2019-IV-0003-0070)the Natural Science Foundation of China (91860105,52074366)+4 种基金China Postdoctoral Science Foundation (2019M662799)Natural Science Foundation of Hunan Province of China (2021JJ40757)the Science and Technology Innovation Program of Hunan Province (2021RC3131)Changsha Municipal Natural Science Foundation (kq2014126)Project Supported by State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘Solid solution strengthening(SSS)is one of the main contributions to the desired tensile properties of nickel-based superalloys for turbine blades and disks.The value of SSS can be calculated by using Fleischer’s and Labusch’s theories,while the model parameters are incorporated without fitting to experimental data of complex alloys.In thiswork,four diffusionmultiples consisting of multicomponent alloys and pure Niare prepared and characterized.The composition and microhardness of singleγphase regions in samples are used to quantify the SSS.Then,Fleischer’s and Labusch’s theories are examined based on high-throughput experiments,respectively.The fitted solid solution coefficients are obtained based on Labusch’s theory and experimental data,indicating higher accuracy.Furthermore,six machine learning algorithms are established,providing a more accurate prediction compared with traditional physical models and fitted physical models.The results show that the coupling of highthroughput experiments and machine learning has great potential in the field of performance prediction and alloy design.
基金supported by the National Science and Technology Major Project(J2019-IV-0003-0070)National Natural Science Foundation of China(12102320)China Postdoctoral Science Foundation(2021M692571).
文摘Refurbishment of thermal barrier coating(TBC)has become a valuable technique to prolong the service life of high-temperature components.This study investigates the effect of the refurbishment process(coating removal and recoating)on the microstructure evolution and physical properties of TBC,including oxidation characteristics,element diffusion behavior,and crack failure mechanisms.The results showed that a certain amount of interdiffusion zone(IDZ)with Cr-rich would be retained in DD6 superalloy substrate after coating removal.The microstructure of the refurbished specimens showed equiaxedβ-NiAl phases,while the ordinary specimens have elongated grain shapes with a high aspect ratio.Moreover,mixed oxides in the refurbished TBC specimens were earlier observed during cyclic oxidation,with a greater thickness compared to ordinary TBC,due to the influence of BC layer phase sizes.The growth mechanism of thermally grown oxide(TGO-Al_(2)O_(3)layer)in the refurbished TBC specimens was also different,resulting from the different mechanisms of mixed oxides growth.Furthermore,under cyclic oxidation with water quenching at 1100℃,the cracks in the refurbished specimen tend to occur in the mixed oxides layer,while the cracks in the ordinary specimen occur in the top coat(TC)layer,attributing to the earlier and thicker mixed oxides layer formed in refurbished specimens.
基金This study is supported by the National Natural Science Foundation of China(Nos.1171101165 and 11902240).
文摘Calcium-magnesium-alumino-silicate(CMAS)corrosion is a critical factor which causes the failure of thermal barrier coating(TBC).CMAS attack significantly alters the temperature and stress fields in TBC,resulting in their delamination or spallation.In this work,the evolution process of TBC prepared by suspension plasma spraying(SPS)under CMAS attack is investigated.The CMAS corrosion leads to the formation of the reaction layer and subsequent bending of TBC.Based on the observations,a corrosion model is proposed to describe the generation and evolution of the reaction layer and bending of TBC.Then,numerical simulations are performed to investigate the corrosion process of free-standing TBC and the complete TBC system under CMAS attack.The corrosion model constructs a bridge for connecting two numerical models.The results show that the CMAS corrosion has a significant influence on the stress field,such as the peak stress,whereas it has little influence on the steady-state temperature field.The peak of stress increases with holding time,which increases the risk of the rupture of TBC.The Mises stress increases nonlinearly along the thick direction of the reaction layer.Furthermore,in the traditional failure zone,such as the interface of the top coat and bond coat,the stress obviously changes during CMAS corrosion.