The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aer...The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aerial vehicles(UAVs) provides a new research direction for urban tree species classification.We proposed an RGB optical image dataset with 10 urban tree species,termed TCC10,which is a benchmark for tree canopy classification(TCC).TCC10 dataset contains two types of data:tree canopy images with simple backgrounds and those with complex backgrounds.The objective was to examine the possibility of using deep learning methods(AlexNet,VGG-16,and ResNet-50) for individual tree species classification.The results of convolutional neural networks(CNNs) were compared with those of K-nearest neighbor(KNN) and BP neural network.Our results demonstrated:(1) ResNet-50 achieved an overall accuracy(OA) of 92.6% and a kappa coefficient of 0.91 for tree species classification on TCC10 and outperformed AlexNet and VGG-16.(2) The classification accuracy of KNN and BP neural network was less than70%,while the accuracy of CNNs was relatively higher.(3)The classification accuracy of tree canopy images with complex backgrounds was lower than that for images with simple backgrounds.For the deciduous tree species in TCC10,the classification accuracy of ResNet-50 was higher in summer than that in autumn.Therefore,the deep learning is effective for urban tree species classification using RGB optical images.展开更多
Trees are an integral part of the forestry ecosystem.In forestry work,the precise acquisition of tree morphological parameters and attributes is affected by complex illumination and tree morphology.In order to minimiz...Trees are an integral part of the forestry ecosystem.In forestry work,the precise acquisition of tree morphological parameters and attributes is affected by complex illumination and tree morphology.In order to minimize a series of inestimable problems,such as yield reduction,ecological damage,and destruction,caused by inaccurate acquisition of tree location information,this paper proposes a ground tree detection method GMOSTNet.Based on the four types of tree species in the GMOST dataset and Faster R-CNN,it extracted the features of the trees,generate candidate regions,classification,and other operations.By reducing the influence of illumination and occlusion factors during experimentation,more detailed information of the input image was obtained.Meanwhile,regarding false detections caused by inappropriate approximations,the deviation and proximity of the proposal were adjusted.The experimental results showed that the AP value of the four tree species is improved after using GMOSTNet,and the overall accuracy increases from the original 87.25%to 93.25%.展开更多
基金supported by Joint Fund of Natural Science Foundation of Zhejiang-Qingshanhu Science and Technology City(Grant No.LQY18C160002)National Natural Science Foundation of China(Grant No.U1809208)+1 种基金Zhejiang Science and Technology Key R&D Program Funded Project(Grant No.2018C02013)Natural Science Foundation of Zhejiang Province(Grant No.LQ20F020005).
文摘The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aerial vehicles(UAVs) provides a new research direction for urban tree species classification.We proposed an RGB optical image dataset with 10 urban tree species,termed TCC10,which is a benchmark for tree canopy classification(TCC).TCC10 dataset contains two types of data:tree canopy images with simple backgrounds and those with complex backgrounds.The objective was to examine the possibility of using deep learning methods(AlexNet,VGG-16,and ResNet-50) for individual tree species classification.The results of convolutional neural networks(CNNs) were compared with those of K-nearest neighbor(KNN) and BP neural network.Our results demonstrated:(1) ResNet-50 achieved an overall accuracy(OA) of 92.6% and a kappa coefficient of 0.91 for tree species classification on TCC10 and outperformed AlexNet and VGG-16.(2) The classification accuracy of KNN and BP neural network was less than70%,while the accuracy of CNNs was relatively higher.(3)The classification accuracy of tree canopy images with complex backgrounds was lower than that for images with simple backgrounds.For the deciduous tree species in TCC10,the classification accuracy of ResNet-50 was higher in summer than that in autumn.Therefore,the deep learning is effective for urban tree species classification using RGB optical images.
基金National Natural Science Foundation of China(U1809208).
文摘Trees are an integral part of the forestry ecosystem.In forestry work,the precise acquisition of tree morphological parameters and attributes is affected by complex illumination and tree morphology.In order to minimize a series of inestimable problems,such as yield reduction,ecological damage,and destruction,caused by inaccurate acquisition of tree location information,this paper proposes a ground tree detection method GMOSTNet.Based on the four types of tree species in the GMOST dataset and Faster R-CNN,it extracted the features of the trees,generate candidate regions,classification,and other operations.By reducing the influence of illumination and occlusion factors during experimentation,more detailed information of the input image was obtained.Meanwhile,regarding false detections caused by inappropriate approximations,the deviation and proximity of the proposal were adjusted.The experimental results showed that the AP value of the four tree species is improved after using GMOSTNet,and the overall accuracy increases from the original 87.25%to 93.25%.