This study elaborates on the design,fabrication,and data analysis details of SPEED,a recently proposed smartphonebased digital polymerase chain reaction(dPCR)device.The dPCR chips incorporate partition diameters rangi...This study elaborates on the design,fabrication,and data analysis details of SPEED,a recently proposed smartphonebased digital polymerase chain reaction(dPCR)device.The dPCR chips incorporate partition diameters ranging from 50μm to 5μm,and these partitions are organized into six distinct blocks to facilitate image processing.Due to the superior thermal conductivity of Si and its potential for mass production,the dPCR chips were fabricated on a Si substrate.A temperature control system based on a high-power density Peltier element and a preheating/cooling PCR protocol user interface shortening the thermal cycle time.The optical design employs four 470 nm light-emitting diodes as light sources,with filters and mirrors effectively managing the light emitted during PCR.An algorithm is utilized for image processing and illumination nonuniformity correction including conversion to a monochromatic format,partition identification,skew correction,and the generation of an image correction mask.We validated the device using a range of deoxyribonucleic acid targets,demonstrating its potential applicability across multiple fields.Therefore,we provide guidance and verification of the design and testing of the recently proposed SPEED device.展开更多
This study presents a rapid and versatile low-cost sample-to-answer system for SARS-CoV-2 diagnostics.The system integrates the extraction and purification of nucleic acids,followed by amplification via either reverse...This study presents a rapid and versatile low-cost sample-to-answer system for SARS-CoV-2 diagnostics.The system integrates the extraction and purification of nucleic acids,followed by amplification via either reverse transcriptionquantitative polymerase chain reaction(RT–qPCR)or reverse transcription loop-mediated isothermal amplification(RT–LAMP).By meeting diverse diagnostic and reagent needs,the platform yields testing results that closely align with those of commercial RT-LAMP and RT‒qPCR systems.Notable advantages of our system include its speed and costeffectiveness.The assay is completed within 28 min,including sample loading(5 min),ribonucleic acid(RNA)extraction(3 min),and RT-LAMP(20 min).The cost of each assay is≈$9.5,and this pricing is competitive against that of Food and Drug Administration(FDA)-approved commercial alternatives.Although some RNA loss during on-chip extraction is observed,the platform maintains a potential limit of detection lower than 297 copies.Portability makes the system particularly useful in environments where centralized laboratories are either unavailable or inconveniently located.Another key feature is the platform’s versatility,allowing users to choose between RT‒qPCR or RT‒LAMP tests based on specific requirements.展开更多
Modeling how military commanders carry out operations is considered complicated,requiring the capability of not only planning for multiple subordinates but also responding to unexpected events during execution.This p...Modeling how military commanders carry out operations is considered complicated,requiring the capability of not only planning for multiple subordinates but also responding to unexpected events during execution.This paper presents an Hierarchical Task Network(HTN)embedded planning and execution control architecture for small unit commander agents.To be adaptive to dynamic world state changes,the architecture employs a partial planning mechanism and generates actions only applicable to current situations.It is also able to coordinate subordinates’actions and handle execution failures at runtime.We demonstrate the architecture’s use with an infantry company scenario,where the commander orders three platoons assaulting a defined hill.Our approach shows the effectiveness to control multiple entities in dynamic environments,making the architecture well-suited to represent small unit commanders’behavior.展开更多
Cloud computing is attracting an increasing number of simulation applications running in the virtualized cloud data center.These applications are submitted to the cloud in the form of simulation jobs.Meanwhile,the man...Cloud computing is attracting an increasing number of simulation applications running in the virtualized cloud data center.These applications are submitted to the cloud in the form of simulation jobs.Meanwhile,the management and scheduling of simulation jobs are playing an essential role to offer efficient and high productivity computational service.In this paper,we design a management and scheduling service framework for simulation jobs in two-tier virtualization-based private cloud data center,named simulation execution as a service(SimEaaS).It aims at releasing users from complex simulation running settings,while guaranteeing the QoS requirements adaptively.Furthermore,a novel job scheduling algorithm named adaptive deadline-aware job size adjustment(ADaSA)algorithm is designed to realize high job responsiveness under QoS requirement for SimEaaS.ADaSA tries to make full use of the idle fragmentation resources by tuning the number of requested processes of submitted jobs in the queue adaptively,while guaranteeing that jobs’deadline requirements are not violated.Extensive experiments with trace-driven simulation are conducted to evaluate the performance of our ADaSA.The results show that ADaSA outperforms both cloud-based job scheduling algorithm KCEASY and traditional EASY in terms of response time(up to 90%)and bounded slow down(up to 95%),while obtains approximately equivalent deadline-missed rate.ADaSA also outperforms two representative moldable scheduling algorithms in terms of deadline-missed rate(up to 60%).展开更多
Control system is very important for each autonomous surface vehicle(ASV),which involves the problem of maintaining the vehicle's position and heading using feedback controller and achieving the desired forces thr...Control system is very important for each autonomous surface vehicle(ASV),which involves the problem of maintaining the vehicle's position and heading using feedback controller and achieving the desired forces through thrust allocation.In this paper,we present a practical thrust allocator for under-actuated and fully-actuated vehicles,which can be represented as a quadratic programming(QP)problem with linear constraints.Such an optimization method allows us to consider common propulsion system,including tunnel thruster,azimuth thruster,and-xed propeller with rudder.These linear constraints enable us to explicitly account for the rate,amplitude and azimuth constraints of each propeller on the vessel.The proposed methods have been illustrated by simulated and experimental maneuvers for di®erent thruster layout of a vehicle.展开更多
基金support from grant no.52150710541 provided by the National Natural Science Foundation of P.R.Chinagrant no.2018YFE0109000 provided by the Ministry of Science and Technology of the P.R.China+6 种基金H.Z.was supported by grant no.62301412 from the Natural Science Foundation of Chinagrant no.2023-JCQN-0130 from the Natural Science Basic Research Program of Shaanxi Province,P.R.Chinagrant no.2023M732815 from the P.R.China Postdoctoral Science Foundationgrant no.2023BSHEDZZ18 from the Postdoctoral Science Foundation of Shaanxi provinceM.K.was supported by grant no.LTACH19005 from the Ministry of Education,YouthSports of the Czech Republic and grant no.RVO-VFN 64165 from the Ministry of Health of the Czech RepublicMinistry of Health,Czech Republic-conceptual development of research organization 00064165,General University Hospital in Prague.
文摘This study elaborates on the design,fabrication,and data analysis details of SPEED,a recently proposed smartphonebased digital polymerase chain reaction(dPCR)device.The dPCR chips incorporate partition diameters ranging from 50μm to 5μm,and these partitions are organized into six distinct blocks to facilitate image processing.Due to the superior thermal conductivity of Si and its potential for mass production,the dPCR chips were fabricated on a Si substrate.A temperature control system based on a high-power density Peltier element and a preheating/cooling PCR protocol user interface shortening the thermal cycle time.The optical design employs four 470 nm light-emitting diodes as light sources,with filters and mirrors effectively managing the light emitted during PCR.An algorithm is utilized for image processing and illumination nonuniformity correction including conversion to a monochromatic format,partition identification,skew correction,and the generation of an image correction mask.We validated the device using a range of deoxyribonucleic acid targets,demonstrating its potential applicability across multiple fields.Therefore,we provide guidance and verification of the design and testing of the recently proposed SPEED device.
基金support of Grant No.52150710541 from the National Natural Science Foundation of China(NSFC),P.R.of ChinaGrant No.2018YFE0109000 from the Ministry of Science and Technology of the P.R.of China+2 种基金Petra Vopařilováand other members of Mendel University would like to acknowledge financial support from the Internal Grant Agency of the Faculty of AgriSciences,Mendel University in Brno(No.AF-IGA2023-IP-030)Haoqing Zhang would like to acknowledge the financial support of Grant No.2023-JC-QN-0130 from the Natural Science Basic Research Program of Shaanxi Province,P.R.ChinaGrant No.2023M732815 from the P.R.China Postdoctoral Science Foundation.
文摘This study presents a rapid and versatile low-cost sample-to-answer system for SARS-CoV-2 diagnostics.The system integrates the extraction and purification of nucleic acids,followed by amplification via either reverse transcriptionquantitative polymerase chain reaction(RT–qPCR)or reverse transcription loop-mediated isothermal amplification(RT–LAMP).By meeting diverse diagnostic and reagent needs,the platform yields testing results that closely align with those of commercial RT-LAMP and RT‒qPCR systems.Notable advantages of our system include its speed and costeffectiveness.The assay is completed within 28 min,including sample loading(5 min),ribonucleic acid(RNA)extraction(3 min),and RT-LAMP(20 min).The cost of each assay is≈$9.5,and this pricing is competitive against that of Food and Drug Administration(FDA)-approved commercial alternatives.Although some RNA loss during on-chip extraction is observed,the platform maintains a potential limit of detection lower than 297 copies.Portability makes the system particularly useful in environments where centralized laboratories are either unavailable or inconveniently located.Another key feature is the platform’s versatility,allowing users to choose between RT‒qPCR or RT‒LAMP tests based on specific requirements.
基金the National Natural Science Foundation of China(Grant Nos.61374185 and 61403402).
文摘Modeling how military commanders carry out operations is considered complicated,requiring the capability of not only planning for multiple subordinates but also responding to unexpected events during execution.This paper presents an Hierarchical Task Network(HTN)embedded planning and execution control architecture for small unit commander agents.To be adaptive to dynamic world state changes,the architecture employs a partial planning mechanism and generates actions only applicable to current situations.It is also able to coordinate subordinates’actions and handle execution failures at runtime.We demonstrate the architecture’s use with an infantry company scenario,where the commander orders three platoons assaulting a defined hill.Our approach shows the effectiveness to control multiple entities in dynamic environments,making the architecture well-suited to represent small unit commanders’behavior.
基金supported by Scientific Research Plan of National University of Defense Technology under Grant No.ZK-20-38National Key Research&Development(R&D)Plan under Grant No.2017YFC0803300+2 种基金the National Natural Science Foundation of China under Grant Nos.71673292,71673294,61503402 and 61673388National Social Science Foundation of China under Grant No.17CGL047Guangdong Key Laboratory for Big Data Analysis and Simulation of Public Opinion.
文摘Cloud computing is attracting an increasing number of simulation applications running in the virtualized cloud data center.These applications are submitted to the cloud in the form of simulation jobs.Meanwhile,the management and scheduling of simulation jobs are playing an essential role to offer efficient and high productivity computational service.In this paper,we design a management and scheduling service framework for simulation jobs in two-tier virtualization-based private cloud data center,named simulation execution as a service(SimEaaS).It aims at releasing users from complex simulation running settings,while guaranteeing the QoS requirements adaptively.Furthermore,a novel job scheduling algorithm named adaptive deadline-aware job size adjustment(ADaSA)algorithm is designed to realize high job responsiveness under QoS requirement for SimEaaS.ADaSA tries to make full use of the idle fragmentation resources by tuning the number of requested processes of submitted jobs in the queue adaptively,while guaranteeing that jobs’deadline requirements are not violated.Extensive experiments with trace-driven simulation are conducted to evaluate the performance of our ADaSA.The results show that ADaSA outperforms both cloud-based job scheduling algorithm KCEASY and traditional EASY in terms of response time(up to 90%)and bounded slow down(up to 95%),while obtains approximately equivalent deadline-missed rate.ADaSA also outperforms two representative moldable scheduling algorithms in terms of deadline-missed rate(up to 60%).
基金supported by the Key R&D Program of Guangdong(2020B1111010002)the Key R&D Program of Hainan(ZDYF2021GXJS041)and the National Natural Science Foundation of China(U2141234).
文摘Control system is very important for each autonomous surface vehicle(ASV),which involves the problem of maintaining the vehicle's position and heading using feedback controller and achieving the desired forces through thrust allocation.In this paper,we present a practical thrust allocator for under-actuated and fully-actuated vehicles,which can be represented as a quadratic programming(QP)problem with linear constraints.Such an optimization method allows us to consider common propulsion system,including tunnel thruster,azimuth thruster,and-xed propeller with rudder.These linear constraints enable us to explicitly account for the rate,amplitude and azimuth constraints of each propeller on the vessel.The proposed methods have been illustrated by simulated and experimental maneuvers for di®erent thruster layout of a vehicle.