The Hansen solubility parameters(HSP)are frequently used for solvent selection and characterization of polymers,and are directly related to the suspension behavior of pigments in solvent mixtures.The performance of cu...The Hansen solubility parameters(HSP)are frequently used for solvent selection and characterization of polymers,and are directly related to the suspension behavior of pigments in solvent mixtures.The performance of currently available group contribution(GC)methods for HSP were evaluated and found to be insufficient for computer-aided product design(CAPD)of paints and coatings.A revised and,for this purpose,improved GC method is presented for estimating HSP of organic compounds,intended for organic pigments.Due to the significant limitations of GC methods,an uncertainty analysis and parameter confidence intervals are provided in order to better quantify the estimation accuracy of the proposed approach.Compared to other applicable GC methods,the prediction error is reduced significantly with average absolute errors of 0.45 MPa^(1/2),1.35 MPa^(1/2),and 1.09 MPa^(1/2) for the partial dispersion(δD),polar(δP)and hydrogen-bonding(δH)solubility parameters respectively for a database of 1106 compounds.The performance for organic pigments is comparable to the overall method performance,with higher average errors forδD and lower average errors forδP andδH.展开更多
This paper presents an application of the hazard model reliability analysis on wind generators, based on a condition monitoring system. The hazard model techniques are most widely used in the statistical analysis of t...This paper presents an application of the hazard model reliability analysis on wind generators, based on a condition monitoring system. The hazard model techniques are most widely used in the statistical analysis of the electric machine's lifetime data. The model can be utilized to perform appropriate maintenance decision-making based on the evaluation of the mean time to failures that occur on the wind generators due to high temperatures. The knowledge of the condition monitoring system is used to estimate the hazard failure, and survival rates, which allows the preventive maintenance approach to be performed accurately. A case study is presented to demonstrate the adequacy of the proposed method based on the condition monitoring data for two wind turbines. Such data are representative in the generator temperatures with respect to the expended operating hours of the selected wind turbines. In this context, the influence of the generator temperatures on the lifetime of the generators can be determined. The results of the study can be used to develop the predetermined maintenance program, which significantly reduces the maintenance and operation costs.展开更多
Inclusion bodies(IBs)of respiratory syncytial virus(RSV)are formed by liquid-liquid phase separation(LLPS)and contain internal structures termed“IB-associated granules”(IBAGs),where anti-termination factor M2-1 and ...Inclusion bodies(IBs)of respiratory syncytial virus(RSV)are formed by liquid-liquid phase separation(LLPS)and contain internal structures termed“IB-associated granules”(IBAGs),where anti-termination factor M2-1 and viral mRNAs are concentrated.However,the mechanism of IBAG formation and the physiological function of IBAGs are unclear.Here,we found that the internal structures of RSV IBs are actual M2-1-free viral messenger ribonucleoprotein(mRNP)condensates formed by secondary LLPS.Mechanistically,the RSV nucleoprotein(N)and M2-1 interact with and recruit PABP to IBs,promoting PABP to bind viral mRNAs transcribed in IBs by RNArecognition motif and drive secondary phase separation.Furthermore,PABP-eIF4G1 interaction regulates viral mRNP condensate composition,thereby recruiting specific translation initiation factors(eIF4G1,eIF4E,eIF4A,eIF4B and eIF4H)into the secondary condensed phase to activate viral mRNAs for ribosomal recruitment.Our study proposes a novel LLPS-regulated translation mechanism during viral infection and a novel antiviral strategy via targeting on secondary condensed phase.展开更多
基金Financial support from the Sino-Danish Center for Education and Research(SDC)the Hempel Foundation to CoaST(The Hempel Foundation Coatings Science and Technology Centre)Hempel A/S。
文摘The Hansen solubility parameters(HSP)are frequently used for solvent selection and characterization of polymers,and are directly related to the suspension behavior of pigments in solvent mixtures.The performance of currently available group contribution(GC)methods for HSP were evaluated and found to be insufficient for computer-aided product design(CAPD)of paints and coatings.A revised and,for this purpose,improved GC method is presented for estimating HSP of organic compounds,intended for organic pigments.Due to the significant limitations of GC methods,an uncertainty analysis and parameter confidence intervals are provided in order to better quantify the estimation accuracy of the proposed approach.Compared to other applicable GC methods,the prediction error is reduced significantly with average absolute errors of 0.45 MPa^(1/2),1.35 MPa^(1/2),and 1.09 MPa^(1/2) for the partial dispersion(δD),polar(δP)and hydrogen-bonding(δH)solubility parameters respectively for a database of 1106 compounds.The performance for organic pigments is comparable to the overall method performance,with higher average errors forδD and lower average errors forδP andδH.
文摘This paper presents an application of the hazard model reliability analysis on wind generators, based on a condition monitoring system. The hazard model techniques are most widely used in the statistical analysis of the electric machine's lifetime data. The model can be utilized to perform appropriate maintenance decision-making based on the evaluation of the mean time to failures that occur on the wind generators due to high temperatures. The knowledge of the condition monitoring system is used to estimate the hazard failure, and survival rates, which allows the preventive maintenance approach to be performed accurately. A case study is presented to demonstrate the adequacy of the proposed method based on the condition monitoring data for two wind turbines. Such data are representative in the generator temperatures with respect to the expended operating hours of the selected wind turbines. In this context, the influence of the generator temperatures on the lifetime of the generators can be determined. The results of the study can be used to develop the predetermined maintenance program, which significantly reduces the maintenance and operation costs.
基金supported by the grants from National Key R&D Program of China(2021YFC2300702 and 2021YFC2300200)the Hubei Provincial Natural Science Foundation of China(2021CFB364)+1 种基金the National Natural Science Foundation of China(82130064,81825015,U22A20337 and 32000119)the Key Biosafety Science and Technology Program of Hubei Jiangxia Laboratory(JXBS001).
文摘Inclusion bodies(IBs)of respiratory syncytial virus(RSV)are formed by liquid-liquid phase separation(LLPS)and contain internal structures termed“IB-associated granules”(IBAGs),where anti-termination factor M2-1 and viral mRNAs are concentrated.However,the mechanism of IBAG formation and the physiological function of IBAGs are unclear.Here,we found that the internal structures of RSV IBs are actual M2-1-free viral messenger ribonucleoprotein(mRNP)condensates formed by secondary LLPS.Mechanistically,the RSV nucleoprotein(N)and M2-1 interact with and recruit PABP to IBs,promoting PABP to bind viral mRNAs transcribed in IBs by RNArecognition motif and drive secondary phase separation.Furthermore,PABP-eIF4G1 interaction regulates viral mRNP condensate composition,thereby recruiting specific translation initiation factors(eIF4G1,eIF4E,eIF4A,eIF4B and eIF4H)into the secondary condensed phase to activate viral mRNAs for ribosomal recruitment.Our study proposes a novel LLPS-regulated translation mechanism during viral infection and a novel antiviral strategy via targeting on secondary condensed phase.