Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph...Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.展开更多
Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 fr...Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 from bibliometric and scientific perspectives.More than 4680 articles on Mg and its alloys were published and indexed in the Web of Science(WoS)Core Collection database last year.The bibliometric analyses show that the traditional structural Mg alloys,functional Mg materials,and corrosion and protection of Mg alloys are still the main research focus.Therefore,this review paper mainly focuses on the research progress of Mg cast alloys,Mg wrought alloys,bio-magnesium alloys,Mg-based energy storage materials,corrosion and protection of Mg alloys in 2023.In addition,future research directions are proposed based on the challenges and obstacles identified throughout this review.展开更多
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
More than 4600 papers in the field of Mg and Mg alloys were published and indexed in the Web of Science(WoS)Core Collection database in 2022.The bibliometric analyses indicate that the microstructure,mechanical proper...More than 4600 papers in the field of Mg and Mg alloys were published and indexed in the Web of Science(WoS)Core Collection database in 2022.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys are still the main research focus.Bio-Mg materials,Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Notable contributions to the research and development of magnesium alloys were made by Chongqing University(>200 papers),Chinese Academy of Sciences,Shanghai Jiao Tong University,and Northeastern University(>100 papers)in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the USA,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,and National University of Singapore in Singapore,etc.This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2022.Based on the issues and challenges identified here,some future research directions are suggested.展开更多
With the increasingly excellent performance of magnesium alloy materials, magnesium alloys are increasingly widely used under the urgent need for weight reduction in aerospace applications. However, due to the severe ...With the increasingly excellent performance of magnesium alloy materials, magnesium alloys are increasingly widely used under the urgent need for weight reduction in aerospace applications. However, due to the severe aviation environment, the strength, corrosion resistance and electrical conductivity of magnesium alloy materials need to be further improved. Many scholars are committed to studying higher comprehensive mechanical properties. Besides, they have studied surface treatment processes with space application characteristics, such as high emissivity oxidation and high anti-corrosion electroplating. To further improve the safety and reliability of magnesium alloys and expand their applications, this paper discusses several kinds of magnesium alloys and summarizes their research progress. The whole manuscript should be revised by an expert who has more experience on English writing. At the same time, the surface treatments of magnesium alloy materials for aerospace are analyzed. Besides, the application of magnesium alloy in aerospace field is summarized. With the in-depth research of many scholars, the improvement of material properties and the development of surface protection and functional technology, it is believed that magnesium alloys will be used in more and more aerospace applications and make more contributions to the aerospace field.展开更多
Optimizing the mechanical properties and damping capacity of the duplex-structured Mg–Li–Zn–Mn alloy by tailoring the microstructure via hot extrusion was investigated.The results show that the Mg–8Li–4Zn–1Mn al...Optimizing the mechanical properties and damping capacity of the duplex-structured Mg–Li–Zn–Mn alloy by tailoring the microstructure via hot extrusion was investigated.The results show that the Mg–8Li–4Zn–1Mn alloy is mainly composed ofα-Mg,β-Li,Mg–Li–Zn and Mn phases.The microstructure of the test alloy is refined owing to dynamic recrystallization(DRX)during hot extrusion.After hot extrusion,the crushed precipitates are uniformly distributed in the test alloy.The yield strength(YS),ultimate tensile strength(UTS),and elongation(EL)of as-extruded alloy reach 156 MPa,208 MPa,and 32.3%,respectively,which are much better than that of as-cast alloy.Furthermore,the as-extruded and as-cast alloys both exhibit superior damping capacities,with the damping capacity(Q^(-1))of 0.030 and 0.033 at the strain amplitude of 2×10^(-3),respectively.The mechanical properties of the test alloy can be significantly improved by hot extrusion,whereas the damping capacities have no noticeable change,which indicates that the duplex-structured Mg–Li alloys with appropriate mechanical properties and damping properties can be obtained by alloying and hot extrusion.展开更多
Research on magnesium alloys continues to attract great attention,with more than 3000 papers on magnesium and magnesium alloys published and indexed in SCI in 2020 alone.The results of bibliometric analyses show that ...Research on magnesium alloys continues to attract great attention,with more than 3000 papers on magnesium and magnesium alloys published and indexed in SCI in 2020 alone.The results of bibliometric analyses show that microstructure control and mechanical properties of Mg alloys are continuously the main research focus,and the corrosion and protection of Mg alloys are still widely concerned.The emerging research hot spots are mainly on functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,and bio-magnesium alloys.Great contributions to the research and development of magnesium alloys in 2020 have been made by Chongqing University,Chinese Academy of Sciences,Central South University,Shanghai Jiaotong University,Northeastern University,Helmholtz Zentrum Geesthacht,etc.The directions for future research are suggested,including:1)the synergistic control of microstructures to achieve high-performance magnesium alloys with concurrent high strength and superior plasticity along with high corrosion resistance and low cost;2)further development of functional magnesium materials such as Mg batteries,hydrogen storage Mg materials,structural-functional materials and bio-magnesium materials;3)studies on the effective corrosion protection and control of degradation rate of magnesium alloys;4)further improvement of advanced processing technology on Mg alloys.展开更多
More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties...More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys still are the main research focus.Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Significant contributions to the research and development of magnesium alloys were made by Chongqing University,Shanghai Jiaotong University,and Chinese Academy of Sciences in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the United States,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,etc..This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2021.Based on the issues and challenges identified here,some future research directions are suggested.展开更多
A ring-shaped Mg?8.5 Gd?4 Y?1 Zn?0.4 Zr(wt%) alloy was manufactured via centrifugal casting and ring-rolling process. The effects of accumulative ring-rolling reduction amount on the microstructure, texture, and tensi...A ring-shaped Mg?8.5 Gd?4 Y?1 Zn?0.4 Zr(wt%) alloy was manufactured via centrifugal casting and ring-rolling process. The effects of accumulative ring-rolling reduction amount on the microstructure, texture, and tensile properties of the alloy were investigated. The results indicate that the microstructure of centrifugal cast alloy consists of equiaxed grains and network-like eutectic structure present at grain boundaries. The ring-rolled alloy exhibits a characteristic bimodal microstructure composed of fine dynamic recrystallized(DRXed) grains with weak basal texture and coarse un-DRXed grains with strong basal texture, along with the presence of LPSO phase. With increasing amount of accumulative ring-rolling reduction, the coarse un-DRXed grains are refined via the formation of increasing amount of fine DRXed grains. Meanwhile, the dynamic precipitation of Mg5 RE phase occurs, generating a dispersion strengthening effect. A superior combination of strength and ductility is achieved in the ring-rolled alloy after an accumulative rolling reduction of 80%. The tensile strength of this ring-rolled alloy after peak aging is further enhanced, reaching 511 MPa, while keeping a reasonable ductility. The salient strengthening mechanisms identified include the grain boundary strengthening of fine DRXed grains, dispersion strengthening of dynamic precipitated Mg;RE phase, short fiber strengthening of LPSO lamellae/rods, and precipitation strengthening of nano-sized prismatic β precipitates and basal γ precipitates.展开更多
The development of materials for energy conversion and storage systems is essential for the realization of the sustainable and low-carbon society for which China pledged the long-term strategic target to reach peak ca...The development of materials for energy conversion and storage systems is essential for the realization of the sustainable and low-carbon society for which China pledged the long-term strategic target to reach peak carbon dioxide(CO_(2))emissions before 2030 and achieve carbon neutrality by 2060.Because the progress in this field can improve the utilization of the intermittent harvested renewable energy.展开更多
A 6061 Al coating for AZ31 Mg alloy was prepared by multi-pass friction stir welding(FSW)with different travel speeds.The mi-crostructure,mechanical properties of the interfacial region and the corrosion behavior of t...A 6061 Al coating for AZ31 Mg alloy was prepared by multi-pass friction stir welding(FSW)with different travel speeds.The mi-crostructure,mechanical properties of the interfacial region and the corrosion behavior of the coating were investigated systematically.The results indicate that the interfacial intermetallic compounds formed in the stir zone(SZ)consist of mainly Al12Mg17 and Al3Mg2.The inter-metallic compounds in the SZ are significantly increased when the travel speed is increased from 30 mm/min to 60 mm/min.Microhardness measurements and results of shear-tensile tests show that the mechanical properties are influenced by the intermetallic compounds formed in the SZ during FSW.Corrosion tests indicate that the 6061 Al coating can significantly improve the corrosion resistance of AZ31 plate.The 6061 Al coating obtained with a travel speed of 30 mm/min has a maximum corrosion potential E corr of-0.503 V VSE.展开更多
Grid direction selection and grid size design are two important elements that need to be considered in the grid direction design in reservoir numerical simulation. Reservoir engineers normally utilize geological data ...Grid direction selection and grid size design are two important elements that need to be considered in the grid direction design in reservoir numerical simulation. Reservoir engineers normally utilize geological data (such as the distribution of fractures, low permeability zones, faults and major stress) and simulation experiences to design the grid direction of simulation model qualitatively. The research of the paper indicates that the key to determine the grid direction is to determine the principal permeability direction. Under the circumstances of few static materials, a new grid direction determination method has been developed by using field data (well location map and inter-well permeability) on the bases of Darcy’s law and tensor analysis theory. The grid direction of WZ11-7 Oilfield simulation model has been determined using four production wells and two production zones (L1 and L3) in WZ11-7-2 well group, the results are in conformity with the geological studied major stress. Therefore, this method can give insights into the numerical simulation study.展开更多
In order to comprehensively analyze the operation instability of the pump turbine S-shaped region,this paper uses DDES turbulence model to calculate the model pump turbine from the perspective of the evolution law of ...In order to comprehensively analyze the operation instability of the pump turbine S-shaped region,this paper uses DDES turbulence model to calculate the model pump turbine from the perspective of the evolution law of runner vortex and draft tube vortex rope and entropy production rate,combined with experiments.The results show that the numerical simulation is in good agreement with the experiment.Omega vortex analysis method is more accurate than other vortex recognition methods because it is not affected by the threshold value.The vortices at the runner region under the runaway condition and the turbine brake condition develop towards the vaneless space and the blade pressure surface respectively,which will cause the flow obstruction and blade separation.The overall vorticity of the reverse pump condition is the largest.The vortex rope of the draft tube under runaway and turbine brake conditions is columnar in shape and has very high rotational strength.The vortex rope under reverse pump conditions is prone to fracture and form scattered vortices,impeding the normal movement of the fluid.The entropy production rate of the spanwise surface near the upper ring and the lower crown is greater than the middle spanwise surface due to the boundary layer effect.And the energy dissipation in the runner under reverse pump conditions is characterized by high at both ends of the runner and low in the middle.The energy dissipation near the wall of the straight cone section of the draft tube is large due to the squeezing effect of the vortex rope on the flow.展开更多
Duplex-structured Mg-7Li-2Al-1.5Sn alloys with high strength were fabricated and their strengthening mechanism was investigated.The Mg-7Li-2Al-1.5Sn alloys were prepared by casting and extruded at the temperature of 5...Duplex-structured Mg-7Li-2Al-1.5Sn alloys with high strength were fabricated and their strengthening mechanism was investigated.The Mg-7Li-2Al-1.5Sn alloys were prepared by casting and extruded at the temperature of 533 K with an extrusion ratio of 25:1.The microstructure and mechanical properties of Mg-7Li-2Al-1.5Sn alloys were systematically investigated by OM,XRD,SEM,TEM,and tensile tests.The results show that Mg-7Li-2Al-1.5Sn alloys are mainly composed ofα-Mg,β-Li,LiMgAl_(2),Mg_(2)Sn and Li_(2)MgSn phases.The yield strength(YS),ultimate tensile strength(UTS)and elongation(EL)of the extruded alloy at room temperature reach 250 MPa,324 MPa and 11.9%,respectively.A lot of Sn-rich precipitates(Mg_(2)Sn and Li_(2)MgSn)are precipitated during extrusion with an average size of∼14 nm,which is beneficial to the grain refinement.Dynamic recrystallization occurs during hot deformation and the nanoprecipitates effectively refine the dynamic recrystallized(DRXed)grains.Besides,the residual dislocations existed in DRXed and un-DRXed grains result in the dislocation strengthening in the extruded alloy.Mg7Li-2Al-1.5Sn alloys possess excellent high-temperature mechanical properties with the YS,UTS and EL of 200 MPa,237 MPa and 26.7%at 423 K,respectively.Sn-rich precipitates with good thermal stability can effectively prevent grain growth,which is good for the improvement of the high-temperature performance of Mg-Li-Al-Sn alloy.展开更多
Hot deformation behavior of an as-extruded duplex structured Mg-9Li-3Al-2.5Sr alloy is investigated via hot compression tests conducted at 200-350℃ with strain rate of 0.001-1 s^-1.The flow behavior of Mg-9Li-3Al-2.5...Hot deformation behavior of an as-extruded duplex structured Mg-9Li-3Al-2.5Sr alloy is investigated via hot compression tests conducted at 200-350℃ with strain rate of 0.001-1 s^-1.The flow behavior of Mg-9Li-3Al-2.5Sr alloy can be described accurately by hyperbolic sine constitutive equation and the average activation energy for deformation is calculated as 143.5 k J/mol.Based on a dynamic materials model,the processing maps of Mg-9Li-3Al-2.5Sr alloy which describe the variation of power dissipation efficiency are constructed as a function of temperature and strain rate.The processing maps exhibit an area of discontinuous dynamic recrystallization occurring at 280-300℃ with strain rate of 0.001-0.01 s^-1,which corresponds to the optimum hot working conditions.展开更多
The extruded Mg-6 Li-4 Zn-xMn(x=0,0.4,0.8,1.2 wt%)alloys were prepared,and the microstructure of the test alloys was investigated by optical microscopy,scanning electron microscopy and transmission electron microscopy...The extruded Mg-6 Li-4 Zn-xMn(x=0,0.4,0.8,1.2 wt%)alloys were prepared,and the microstructure of the test alloys was investigated by optical microscopy,scanning electron microscopy and transmission electron microscopy.The corrosion properties were determined by electrochemical measurements and immersion measurements in 3.5%NaCl solution.The results indicate that the extruded Mg-6 Li-4 Zn-xMn alloys are mainly composed ofα-Mg phase,β-Li phase,Mn precipitates and some intermetallic compounds(MgLi_(2)Zn).With the addition of Mn,stable corrosion products were formed on the surface of the test alloy,which can effectively inhibit further corrosion progress and improve the corrosion resistance.Mg-6 Li-4 Zn-1.2 Mn alloy exhibits the best corrosion resistance,attributed to grain refinement,the improvement of the stability of corrosion product film and uniform distribution of fine second phases.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42322408,42188101,41974211,and 42074202)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC028)+1 种基金the Strategic Priority Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15052500,XDA15350201,and XDA15014800)supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202045)。
文摘Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.
基金supported by the National Natural Science Foundation of China(Nos.52171104,52371093,52471117 and 52225101)the National Key Research and Development Program of China(No.2021YFB3701100).
文摘Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 from bibliometric and scientific perspectives.More than 4680 articles on Mg and its alloys were published and indexed in the Web of Science(WoS)Core Collection database last year.The bibliometric analyses show that the traditional structural Mg alloys,functional Mg materials,and corrosion and protection of Mg alloys are still the main research focus.Therefore,this review paper mainly focuses on the research progress of Mg cast alloys,Mg wrought alloys,bio-magnesium alloys,Mg-based energy storage materials,corrosion and protection of Mg alloys in 2023.In addition,future research directions are proposed based on the challenges and obstacles identified throughout this review.
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
基金This work was financially supported by the National Key Research and Development Program of China(No.2021YFB3701100)the National Natural Science Foundation of China(Nos.52171104 and U20A20234)+1 种基金the Chongqing Research Program of Basic Research and Frontier Technology,China(Nos.cstc2021ycjh-bgzxm0086 and 2019jcyj-msxmX0306)the fundamental Research funds for Central Universities,China(Nos.SKLMT-ZZKT-2022R04,2021CDJJMRH-001,and SKLMT-ZZKT-2022M12).
文摘More than 4600 papers in the field of Mg and Mg alloys were published and indexed in the Web of Science(WoS)Core Collection database in 2022.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys are still the main research focus.Bio-Mg materials,Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Notable contributions to the research and development of magnesium alloys were made by Chongqing University(>200 papers),Chinese Academy of Sciences,Shanghai Jiao Tong University,and Northeastern University(>100 papers)in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the USA,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,and National University of Singapore in Singapore,etc.This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2022.Based on the issues and challenges identified here,some future research directions are suggested.
文摘With the increasingly excellent performance of magnesium alloy materials, magnesium alloys are increasingly widely used under the urgent need for weight reduction in aerospace applications. However, due to the severe aviation environment, the strength, corrosion resistance and electrical conductivity of magnesium alloy materials need to be further improved. Many scholars are committed to studying higher comprehensive mechanical properties. Besides, they have studied surface treatment processes with space application characteristics, such as high emissivity oxidation and high anti-corrosion electroplating. To further improve the safety and reliability of magnesium alloys and expand their applications, this paper discusses several kinds of magnesium alloys and summarizes their research progress. The whole manuscript should be revised by an expert who has more experience on English writing. At the same time, the surface treatments of magnesium alloy materials for aerospace are analyzed. Besides, the application of magnesium alloy in aerospace field is summarized. With the in-depth research of many scholars, the improvement of material properties and the development of surface protection and functional technology, it is believed that magnesium alloys will be used in more and more aerospace applications and make more contributions to the aerospace field.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB 3701100)the National Natural Science Foundation of China(Nos.52171104 and U20A20234)+2 种基金the Chongqing Research Program of Basic Research and Frontier Technology,China(Nos.cstc2021ycjh-bgzxm0086 and 2019jcyj-msxmX0306)the Fundamental Research Funds for Central Universities,China(Nos.SKLMT-ZZKT-2022R04,2021CDJJMRH-001,and SKLMT-ZZKT-2022M12)the 111 Project by the Ministry of Education and the State Administration of Foreign Experts Affairs of China(No.B16007)。
文摘Optimizing the mechanical properties and damping capacity of the duplex-structured Mg–Li–Zn–Mn alloy by tailoring the microstructure via hot extrusion was investigated.The results show that the Mg–8Li–4Zn–1Mn alloy is mainly composed ofα-Mg,β-Li,Mg–Li–Zn and Mn phases.The microstructure of the test alloy is refined owing to dynamic recrystallization(DRX)during hot extrusion.After hot extrusion,the crushed precipitates are uniformly distributed in the test alloy.The yield strength(YS),ultimate tensile strength(UTS),and elongation(EL)of as-extruded alloy reach 156 MPa,208 MPa,and 32.3%,respectively,which are much better than that of as-cast alloy.Furthermore,the as-extruded and as-cast alloys both exhibit superior damping capacities,with the damping capacity(Q^(-1))of 0.030 and 0.033 at the strain amplitude of 2×10^(-3),respectively.The mechanical properties of the test alloy can be significantly improved by hot extrusion,whereas the damping capacities have no noticeable change,which indicates that the duplex-structured Mg–Li alloys with appropriate mechanical properties and damping properties can be obtained by alloying and hot extrusion.
基金financially supported by the National Key Research and Development Program of China(Project No.2016YFB0301100&Project No.2016YFB0700403)the Chongqing Academician Special Fund(Project No.cstc2018jcyj-yszx X0007&Project No.cstc2020yszx-jcyj X0001)+1 种基金Chongqing Research Program of Basic Research and Frontier Technology(Project No.cstc2019jcyj-msxm0438)the 111 Project(Project No.B16007)by the Ministry of Education and the State Administration of Foreign Experts Affairs of China。
文摘Research on magnesium alloys continues to attract great attention,with more than 3000 papers on magnesium and magnesium alloys published and indexed in SCI in 2020 alone.The results of bibliometric analyses show that microstructure control and mechanical properties of Mg alloys are continuously the main research focus,and the corrosion and protection of Mg alloys are still widely concerned.The emerging research hot spots are mainly on functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,and bio-magnesium alloys.Great contributions to the research and development of magnesium alloys in 2020 have been made by Chongqing University,Chinese Academy of Sciences,Central South University,Shanghai Jiaotong University,Northeastern University,Helmholtz Zentrum Geesthacht,etc.The directions for future research are suggested,including:1)the synergistic control of microstructures to achieve high-performance magnesium alloys with concurrent high strength and superior plasticity along with high corrosion resistance and low cost;2)further development of functional magnesium materials such as Mg batteries,hydrogen storage Mg materials,structural-functional materials and bio-magnesium materials;3)studies on the effective corrosion protection and control of degradation rate of magnesium alloys;4)further improvement of advanced processing technology on Mg alloys.
基金support from the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)National Natural Science Foundation of China(NSFC)(No.52071036)+1 种基金Key Research and Development Program of Zhejiang Province(No.2021C01086)the Fundamental Research Funds for the Central Universities Project(Nos.2021CDJCGJ009,SKLMT-ZZKT-2021M11)is also gratefully acknowledged.
文摘More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys still are the main research focus.Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Significant contributions to the research and development of magnesium alloys were made by Chongqing University,Shanghai Jiaotong University,and Chinese Academy of Sciences in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the United States,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,etc..This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2021.Based on the issues and challenges identified here,some future research directions are suggested.
基金The authors would like to acknowledge financial support by the National Natural Science Foundation(Project No.51701026)the Chongqing Research Program of Basic Research and Frontier Technology(Project No.cstc2018jcyjAX0611)+2 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN201803103)the Fundamental Research Funds for the Central Universities(Project No.2018CDGFCL0005 and Project No.2018CDJDCL0019)the support of the 111 Project(Project No.B 16007)by the Ministry of Education and the State Administration of Foreign Experts Affairs of China.
基金financial support by Fundamental Research Funds for the National Key Research and Development Program of China(Project No.2016YFB0700403)the Venture&Innovation Support Program for Chongqing Overseas Returnees(Project No.cx2018057)+1 种基金the Chongqing Research Program of Basic Research and Frontier Technology(Project Nos.cstc2019jcyjmsxm0548 and cstc2019jcyj-msxm X0306)the Fundamental Research Funds for the Central Universities(Project No.2021CDJJMRH-001)。
文摘A ring-shaped Mg?8.5 Gd?4 Y?1 Zn?0.4 Zr(wt%) alloy was manufactured via centrifugal casting and ring-rolling process. The effects of accumulative ring-rolling reduction amount on the microstructure, texture, and tensile properties of the alloy were investigated. The results indicate that the microstructure of centrifugal cast alloy consists of equiaxed grains and network-like eutectic structure present at grain boundaries. The ring-rolled alloy exhibits a characteristic bimodal microstructure composed of fine dynamic recrystallized(DRXed) grains with weak basal texture and coarse un-DRXed grains with strong basal texture, along with the presence of LPSO phase. With increasing amount of accumulative ring-rolling reduction, the coarse un-DRXed grains are refined via the formation of increasing amount of fine DRXed grains. Meanwhile, the dynamic precipitation of Mg5 RE phase occurs, generating a dispersion strengthening effect. A superior combination of strength and ductility is achieved in the ring-rolled alloy after an accumulative rolling reduction of 80%. The tensile strength of this ring-rolled alloy after peak aging is further enhanced, reaching 511 MPa, while keeping a reasonable ductility. The salient strengthening mechanisms identified include the grain boundary strengthening of fine DRXed grains, dispersion strengthening of dynamic precipitated Mg;RE phase, short fiber strengthening of LPSO lamellae/rods, and precipitation strengthening of nano-sized prismatic β precipitates and basal γ precipitates.
文摘The development of materials for energy conversion and storage systems is essential for the realization of the sustainable and low-carbon society for which China pledged the long-term strategic target to reach peak carbon dioxide(CO_(2))emissions before 2030 and achieve carbon neutrality by 2060.Because the progress in this field can improve the utilization of the intermittent harvested renewable energy.
基金The authors acknowledge financial support by the National Natural Science Foundation(Project No.51601024)the National Key Research and Development Program of China(Project No.2016YFB0700403)+2 种基金the Chongqing Research Program of Basic Research and Frontier Technology(Project No.cstc2019jcyj-msxmX0306)the Fundamental Research Funds for the Central Universities(Project Nos.2019CDXYCL0031,2018CDJDCL0019,2018CDJDCD0001,and 2018CDGFCL0005)the support of the 111 Project(Project No.B16007)by the Ministry of Education and the State Administration of Foreign Experts Affairs of China.
文摘A 6061 Al coating for AZ31 Mg alloy was prepared by multi-pass friction stir welding(FSW)with different travel speeds.The mi-crostructure,mechanical properties of the interfacial region and the corrosion behavior of the coating were investigated systematically.The results indicate that the interfacial intermetallic compounds formed in the stir zone(SZ)consist of mainly Al12Mg17 and Al3Mg2.The inter-metallic compounds in the SZ are significantly increased when the travel speed is increased from 30 mm/min to 60 mm/min.Microhardness measurements and results of shear-tensile tests show that the mechanical properties are influenced by the intermetallic compounds formed in the SZ during FSW.Corrosion tests indicate that the 6061 Al coating can significantly improve the corrosion resistance of AZ31 plate.The 6061 Al coating obtained with a travel speed of 30 mm/min has a maximum corrosion potential E corr of-0.503 V VSE.
文摘Grid direction selection and grid size design are two important elements that need to be considered in the grid direction design in reservoir numerical simulation. Reservoir engineers normally utilize geological data (such as the distribution of fractures, low permeability zones, faults and major stress) and simulation experiences to design the grid direction of simulation model qualitatively. The research of the paper indicates that the key to determine the grid direction is to determine the principal permeability direction. Under the circumstances of few static materials, a new grid direction determination method has been developed by using field data (well location map and inter-well permeability) on the bases of Darcy’s law and tensor analysis theory. The grid direction of WZ11-7 Oilfield simulation model has been determined using four production wells and two production zones (L1 and L3) in WZ11-7-2 well group, the results are in conformity with the geological studied major stress. Therefore, this method can give insights into the numerical simulation study.
基金The authors acknowledge that this work was financially supported by the National Natural Science Foundation of China(Grant No.52079118)Sichuan Provincial Department of Science and Technology Project(Grant No.2023YFQ0021).
文摘In order to comprehensively analyze the operation instability of the pump turbine S-shaped region,this paper uses DDES turbulence model to calculate the model pump turbine from the perspective of the evolution law of runner vortex and draft tube vortex rope and entropy production rate,combined with experiments.The results show that the numerical simulation is in good agreement with the experiment.Omega vortex analysis method is more accurate than other vortex recognition methods because it is not affected by the threshold value.The vortices at the runner region under the runaway condition and the turbine brake condition develop towards the vaneless space and the blade pressure surface respectively,which will cause the flow obstruction and blade separation.The overall vorticity of the reverse pump condition is the largest.The vortex rope of the draft tube under runaway and turbine brake conditions is columnar in shape and has very high rotational strength.The vortex rope under reverse pump conditions is prone to fracture and form scattered vortices,impeding the normal movement of the fluid.The entropy production rate of the spanwise surface near the upper ring and the lower crown is greater than the middle spanwise surface due to the boundary layer effect.And the energy dissipation in the runner under reverse pump conditions is characterized by high at both ends of the runner and low in the middle.The energy dissipation near the wall of the straight cone section of the draft tube is large due to the squeezing effect of the vortex rope on the flow.
基金the financial support from the Chongqing Research Program of Basic Research and Frontier Technology(Project No.cstc2019jcyj-msxm X0306)the National Key Research and Development Program of China(Project No.2016YFB0700403&Project No.2016YFB0301100)+1 种基金the fundamental Research funds for Central Universities(Project No.2021CDJJMRH001 and 2020CDJDPT001)the 111 Project(Project No.B16007)by the Ministry of Education and the State Administration of Foreign Experts Affairs of China。
文摘Duplex-structured Mg-7Li-2Al-1.5Sn alloys with high strength were fabricated and their strengthening mechanism was investigated.The Mg-7Li-2Al-1.5Sn alloys were prepared by casting and extruded at the temperature of 533 K with an extrusion ratio of 25:1.The microstructure and mechanical properties of Mg-7Li-2Al-1.5Sn alloys were systematically investigated by OM,XRD,SEM,TEM,and tensile tests.The results show that Mg-7Li-2Al-1.5Sn alloys are mainly composed ofα-Mg,β-Li,LiMgAl_(2),Mg_(2)Sn and Li_(2)MgSn phases.The yield strength(YS),ultimate tensile strength(UTS)and elongation(EL)of the extruded alloy at room temperature reach 250 MPa,324 MPa and 11.9%,respectively.A lot of Sn-rich precipitates(Mg_(2)Sn and Li_(2)MgSn)are precipitated during extrusion with an average size of∼14 nm,which is beneficial to the grain refinement.Dynamic recrystallization occurs during hot deformation and the nanoprecipitates effectively refine the dynamic recrystallized(DRXed)grains.Besides,the residual dislocations existed in DRXed and un-DRXed grains result in the dislocation strengthening in the extruded alloy.Mg7Li-2Al-1.5Sn alloys possess excellent high-temperature mechanical properties with the YS,UTS and EL of 200 MPa,237 MPa and 26.7%at 423 K,respectively.Sn-rich precipitates with good thermal stability can effectively prevent grain growth,which is good for the improvement of the high-temperature performance of Mg-Li-Al-Sn alloy.
基金the financial support from the National Natural Science Foundation(Project No.51601024)the National Key Research and Development plan(Project No.2016YFB0700403)+1 种基金the Chongqing Research Program of Basic Research and Frontier Technology(Project No.cstc2016jcyj A0418)the Fundamental Research Funds for the Central Universities(Project No.106112015CDJXY130011 and No.CDJZR14130007)
文摘Hot deformation behavior of an as-extruded duplex structured Mg-9Li-3Al-2.5Sr alloy is investigated via hot compression tests conducted at 200-350℃ with strain rate of 0.001-1 s^-1.The flow behavior of Mg-9Li-3Al-2.5Sr alloy can be described accurately by hyperbolic sine constitutive equation and the average activation energy for deformation is calculated as 143.5 k J/mol.Based on a dynamic materials model,the processing maps of Mg-9Li-3Al-2.5Sr alloy which describe the variation of power dissipation efficiency are constructed as a function of temperature and strain rate.The processing maps exhibit an area of discontinuous dynamic recrystallization occurring at 280-300℃ with strain rate of 0.001-0.01 s^-1,which corresponds to the optimum hot working conditions.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0700403)the Chongqing Research Program of Basic Research and Frontier Technology(Nos.cstc2019jcyj-msxmX0306 and cstc2019jcjy-msxmX0539)+2 种基金the National Natural Science Foundation of China(No.52171104)the fundamental Research funds for Central Universities(No.2021CDJJMRH-001)the 111 Project(No.B16007)by the Ministry of Education and the State Administration of Foreign Experts Affairs of China。
文摘The extruded Mg-6 Li-4 Zn-xMn(x=0,0.4,0.8,1.2 wt%)alloys were prepared,and the microstructure of the test alloys was investigated by optical microscopy,scanning electron microscopy and transmission electron microscopy.The corrosion properties were determined by electrochemical measurements and immersion measurements in 3.5%NaCl solution.The results indicate that the extruded Mg-6 Li-4 Zn-xMn alloys are mainly composed ofα-Mg phase,β-Li phase,Mn precipitates and some intermetallic compounds(MgLi_(2)Zn).With the addition of Mn,stable corrosion products were formed on the surface of the test alloy,which can effectively inhibit further corrosion progress and improve the corrosion resistance.Mg-6 Li-4 Zn-1.2 Mn alloy exhibits the best corrosion resistance,attributed to grain refinement,the improvement of the stability of corrosion product film and uniform distribution of fine second phases.