Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic ...Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic CO_(2) conversion.Herein,a modified TiO_(2)/In_(2)O_(3)(R-P2 5/In_(2)O_(3-x)) type Ⅱ heterojunction composite with oxygen vacancies is designed for photocatalytic CO_(2) reduction,which exhibits excellent CO_(2) reduction activity,with a C_(2) selectivity of 56.66%(in terms of R_(electron)).In situ Fourier-transform infrared spectroscopy(DRIFTS) and time-resolved photoluminescence(TR-PL) spectroscopy are used to reveal the intermediate formation of the photocatalytic mechanism and photogenerated electron lifetime,respectively.The experimental characterizations reveal that the R-P25/In_(2)O_(3-x) composite shows a remarkable behavior for coupling C-C bonds.Besides,efficient charge separation contributes to the improved CO_(2) conversion performance of photocatalysts.This work introduces a type Ⅱ heterojunction composite photocatalyst,which promotes understanding the CO_(2) reduction mechanisms on heterojunction composites and is valuable for the development of photocatalysts.展开更多
Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency t...Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.展开更多
<div style="text-align:justify;"> In view of the serious lack and lag of the test and evaluation technology of non-metallic composite continuous pipe, and focusing on the characteristics of the applica...<div style="text-align:justify;"> In view of the serious lack and lag of the test and evaluation technology of non-metallic composite continuous pipe, and focusing on the characteristics of the application of non-metallic composite continuous pipe in oil field, this paper discusses a series of new full-scale test and evaluation technologies for accurately evaluating the product quality and practical application performance of non-metallic composite continuous pipe, which effectively solves the major technical problem that the new products of non-metallic pipe cannot be accurately evaluated. Based on the characteristics of the application of non-metallic composite continuous pipe in oil field, a series of new full-scale test evaluation technologies which can accurately evaluate the product quality and practical application performance of non-metallic pipe are designed through a large number of tests. The test and evaluation technology can accurately evaluate the key performance of high and low pressure cycle, high and low temperature cycle, gas permeability resistance, minimum bending radius etc. It provides a scientific evaluation basis for the standardized application of non-metallic continuous pipe and a reliable quality control method for the selection of products in oil field. </div>展开更多
Herein, a stable and efficient CoS_(2)-ReS_(2) electrocatalyst is successfully constructed by using the different molar ratios of CoS_(2) on ReS_(2). The size and morphology of the catalysts are significantly changed ...Herein, a stable and efficient CoS_(2)-ReS_(2) electrocatalyst is successfully constructed by using the different molar ratios of CoS_(2) on ReS_(2). The size and morphology of the catalysts are significantly changed after the CoS_(2) is grown on ReS_(2), providing regulation of the catalytic activity of ReS_(2). Particularly, the optimized CoS_(2)-ReS_(2) shows superior electrocatalytic properties with a low voltage of 1.48 V at 20 mA cm^(-2) for overall water splitting in 1.0 M KOH, which is smaller than the noble metal-based catalysts(1.77 V at 20 mA cm^(-2)). The XPS, XAS, and theoretical data confirm that the interfacial regulation of ReS_(2) by CoS_(2) can provide rich edge catalytic sites, which greatly optimizes the catalytic kinetics and drop the energy barrier for oxygen/hydrogen evolution reactions. Our results demonstrated that interfacial engineering is an efficient route for fabricating high-performance water splitting electrocatalysts.展开更多
Boron,one of the essential trace elements for normal growth and development of tobacco,has a great impact on the yield and quality of flue-cured tobacco. The objective of this study is to explore the best pattern and ...Boron,one of the essential trace elements for normal growth and development of tobacco,has a great impact on the yield and quality of flue-cured tobacco. The objective of this study is to explore the best pattern and level of boron fertilizer supply of red soil in the Honghe tobacco area. In this study,the randomized block design was used to study different boron fertilizer supply methods and levels. The results showed that during transplanting,it was good to apply 1. 50 kg/ha Fertibor boron with pure boron content≥15%; at the resettling stage,it was good to spray 225 kg solution composed of 75 m L/ha Compo liquid boron with pure boron content≥130 g/L mixed with water onto leaves when night fell in a sunny day. The two fertilization methods had better effect than the basal application of boron fertilizer,and the resistance to pests and diseases or economic character of tobacco plants was better than under spraying treatment.展开更多
This paper presents Part II of a review on DFACS,which specifically focuses on the modeling and analysis of disturbances and noises in DFACSs.In Part I,the system composition and dynamics model of the DFACS were prese...This paper presents Part II of a review on DFACS,which specifically focuses on the modeling and analysis of disturbances and noises in DFACSs.In Part I,the system composition and dynamics model of the DFACS were presented.In this paper,we discuss the effects of disturbance forces and noises on the system,and summarize various analysis and modeling methods for these interferences,including the integral method,frequency domain analysis method,and magnitude evaluation method.By analyzing the impact of disturbances and noises on the system,the paper also summarizes the system’s performance under slight interferences.Additionally,we highlight current research difficulties in the field of DFACS noise analysis.Overall,this paper provides valuable insights into the modeling and analysis of disturbances and noises in DFACSs,and identifies key areas for future research.展开更多
The Drag-Free and Attitude Control System(DFACS)is a critical platform for various space missions,including high precision satellite navigation,geoscience and gravity field measurement,and space scientific experiments...The Drag-Free and Attitude Control System(DFACS)is a critical platform for various space missions,including high precision satellite navigation,geoscience and gravity field measurement,and space scientific experiments.This paper presents a comprehensive review of over sixty years of research on the design and dynamics model of DFACS.Firstly,we examine the open literature on DFACS and its applications in Drag-Free missions,providing readers with necessary background information on the field.Secondly,we analyze the system configurations and main characteristics of different DFACSs,paying particular attention to the coupling mechanism between the system configuration and dynamics model.Thirdly,we summarize the dynamics modeling methods and main dynamics models of DFACS from multiple perspectives,including common fundamentals and specific applications.Lastly,we identify current challenges and technological difficulties in the system design and dynamics modeling of DFACS,while suggesting potential avenues for future research.This paper aims to provide readers with a comprehensive understanding of the state-of-the-art in DFACS research,as well as the future prospects and challenges in this field.展开更多
This paper proposes a neural network-based fault diagnosis scheme to address the problem of fault isolation and estimation for the Single-Gimbal Control Moment Gyroscopes(SGCMGs)of spacecraft in a periodic orbit.To th...This paper proposes a neural network-based fault diagnosis scheme to address the problem of fault isolation and estimation for the Single-Gimbal Control Moment Gyroscopes(SGCMGs)of spacecraft in a periodic orbit.To this end,a disturbance observer based on neural network is developed for active anti-disturbance,so as to improve the accuracy of fault diagnosis.The periodic disturbance on orbit can be decoupled with fault by resorting to the fitting and memory ability of neural network.Subsequently,the fault diagnosis scheme is established based on the idea of information fusion.The data of spacecraft attitude and gimbals position are combined to implement fault isolation and estimation based on adaptive estimator and neural network.Then,an adaptive sliding mode controller incorporating the disturbance and fault estimation results is designed to achieve active fault-tolerant control.In addition,the paper gives the proof of the stability of the proposed schemes,and the simulation results show that the proposed scheme achieves better diagnosis and control results than compared algorithm.展开更多
Recently,rapid advances in flexible strain sensors have broadened their application scenario in monitoring of various mechanophysiological signals.Among various strain sensors,the crack-based strain sensors have drawn...Recently,rapid advances in flexible strain sensors have broadened their application scenario in monitoring of various mechanophysiological signals.Among various strain sensors,the crack-based strain sensors have drawn increasing attention in monitoring subtle mechanical deformation due to their high sensitivity.However,early generation and rapid propagation of cracks in the conductive sensing layer result in a narrow working range,limiting their application in monitoring large biomechanical signals.Herein,we developed a stress-deconcentrated ultrasensitive strain(SDUS)sensor with ultrahigh sensitivity(gauge factor up to2.3×10^(6))and a wide working range(0%-50%)via incorporating notch-insensitive elastic substrate and microcrack-tunable conductive layer.Furthermore,the highly elastic amine-based polymer-modified polydimethylsiloxane substrate without obvious hysteresis endows our SDUS sensor with a rapid response time(2.33 ms)to external stimuli.The accurate detection of the radial pulse,joint motion,and vocal cord vibration proves the capability of SDUS sensor for healthcare monitoring and human-machine communications.展开更多
基金National Research Foundation (NRF) of Korea grant funded by the Korea Government (MSIT) (NRF-2022R1A2C2093415)partially funding from the Circle Foundation (Republic of Korea) (Grant Number: 2023 TCF Innovative Science Project-03))partially Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2022R1A6C101A751)。
文摘Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic CO_(2) conversion.Herein,a modified TiO_(2)/In_(2)O_(3)(R-P2 5/In_(2)O_(3-x)) type Ⅱ heterojunction composite with oxygen vacancies is designed for photocatalytic CO_(2) reduction,which exhibits excellent CO_(2) reduction activity,with a C_(2) selectivity of 56.66%(in terms of R_(electron)).In situ Fourier-transform infrared spectroscopy(DRIFTS) and time-resolved photoluminescence(TR-PL) spectroscopy are used to reveal the intermediate formation of the photocatalytic mechanism and photogenerated electron lifetime,respectively.The experimental characterizations reveal that the R-P25/In_(2)O_(3-x) composite shows a remarkable behavior for coupling C-C bonds.Besides,efficient charge separation contributes to the improved CO_(2) conversion performance of photocatalysts.This work introduces a type Ⅱ heterojunction composite photocatalyst,which promotes understanding the CO_(2) reduction mechanisms on heterojunction composites and is valuable for the development of photocatalysts.
基金support of the National Natural Sci-ence Foundation of China(NSFC)(62305373)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA1502040404,XDB2101040004).
文摘Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.
文摘<div style="text-align:justify;"> In view of the serious lack and lag of the test and evaluation technology of non-metallic composite continuous pipe, and focusing on the characteristics of the application of non-metallic composite continuous pipe in oil field, this paper discusses a series of new full-scale test and evaluation technologies for accurately evaluating the product quality and practical application performance of non-metallic composite continuous pipe, which effectively solves the major technical problem that the new products of non-metallic pipe cannot be accurately evaluated. Based on the characteristics of the application of non-metallic composite continuous pipe in oil field, a series of new full-scale test evaluation technologies which can accurately evaluate the product quality and practical application performance of non-metallic pipe are designed through a large number of tests. The test and evaluation technology can accurately evaluate the key performance of high and low pressure cycle, high and low temperature cycle, gas permeability resistance, minimum bending radius etc. It provides a scientific evaluation basis for the standardized application of non-metallic continuous pipe and a reliable quality control method for the selection of products in oil field. </div>
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(NRF-2022R1A2C2093415) and (NRF-2018R1A2B6006721)Institute for Basic Science of Korea (IBS-R011-D1)the Korea Medical Device Development Fund grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: KMDF_PR_20200901_0004)。
文摘Herein, a stable and efficient CoS_(2)-ReS_(2) electrocatalyst is successfully constructed by using the different molar ratios of CoS_(2) on ReS_(2). The size and morphology of the catalysts are significantly changed after the CoS_(2) is grown on ReS_(2), providing regulation of the catalytic activity of ReS_(2). Particularly, the optimized CoS_(2)-ReS_(2) shows superior electrocatalytic properties with a low voltage of 1.48 V at 20 mA cm^(-2) for overall water splitting in 1.0 M KOH, which is smaller than the noble metal-based catalysts(1.77 V at 20 mA cm^(-2)). The XPS, XAS, and theoretical data confirm that the interfacial regulation of ReS_(2) by CoS_(2) can provide rich edge catalytic sites, which greatly optimizes the catalytic kinetics and drop the energy barrier for oxygen/hydrogen evolution reactions. Our results demonstrated that interfacial engineering is an efficient route for fabricating high-performance water splitting electrocatalysts.
基金Supported by Yunnan Tobacco Company Program(2015YN192014YN25)
文摘Boron,one of the essential trace elements for normal growth and development of tobacco,has a great impact on the yield and quality of flue-cured tobacco. The objective of this study is to explore the best pattern and level of boron fertilizer supply of red soil in the Honghe tobacco area. In this study,the randomized block design was used to study different boron fertilizer supply methods and levels. The results showed that during transplanting,it was good to apply 1. 50 kg/ha Fertibor boron with pure boron content≥15%; at the resettling stage,it was good to spray 225 kg solution composed of 75 m L/ha Compo liquid boron with pure boron content≥130 g/L mixed with water onto leaves when night fell in a sunny day. The two fertilization methods had better effect than the basal application of boron fertilizer,and the resistance to pests and diseases or economic character of tobacco plants was better than under spraying treatment.
基金This research was supported by National Key R&D Program of China:Gravitational Wave Detection Project(Nos.2021YFC2202601,2021YFC2202603)National Natural Science Foundation of China(No.12172288).
文摘This paper presents Part II of a review on DFACS,which specifically focuses on the modeling and analysis of disturbances and noises in DFACSs.In Part I,the system composition and dynamics model of the DFACS were presented.In this paper,we discuss the effects of disturbance forces and noises on the system,and summarize various analysis and modeling methods for these interferences,including the integral method,frequency domain analysis method,and magnitude evaluation method.By analyzing the impact of disturbances and noises on the system,the paper also summarizes the system’s performance under slight interferences.Additionally,we highlight current research difficulties in the field of DFACS noise analysis.Overall,this paper provides valuable insights into the modeling and analysis of disturbances and noises in DFACSs,and identifies key areas for future research.
基金This research was supported by National Key R&D Program of China:Gravitational Wave Detection Project,China(Nos.2021YFC2202601,2021YFC2202603)National Natural Science Foundation of China(No.12172288).
文摘The Drag-Free and Attitude Control System(DFACS)is a critical platform for various space missions,including high precision satellite navigation,geoscience and gravity field measurement,and space scientific experiments.This paper presents a comprehensive review of over sixty years of research on the design and dynamics model of DFACS.Firstly,we examine the open literature on DFACS and its applications in Drag-Free missions,providing readers with necessary background information on the field.Secondly,we analyze the system configurations and main characteristics of different DFACSs,paying particular attention to the coupling mechanism between the system configuration and dynamics model.Thirdly,we summarize the dynamics modeling methods and main dynamics models of DFACS from multiple perspectives,including common fundamentals and specific applications.Lastly,we identify current challenges and technological difficulties in the system design and dynamics modeling of DFACS,while suggesting potential avenues for future research.This paper aims to provide readers with a comprehensive understanding of the state-of-the-art in DFACS research,as well as the future prospects and challenges in this field.
基金supported in part by the National Natural Science Foundation of China(Nos.61960206011,61903018,61633003)the National Defense Basic Scientific Research program of China(No.JCKY2018203B022)+1 种基金Beijing Natural Science Foundation of China(No.JQ19017)the China Postdoctoral Science Foundation(No.2021M690300)。
文摘This paper proposes a neural network-based fault diagnosis scheme to address the problem of fault isolation and estimation for the Single-Gimbal Control Moment Gyroscopes(SGCMGs)of spacecraft in a periodic orbit.To this end,a disturbance observer based on neural network is developed for active anti-disturbance,so as to improve the accuracy of fault diagnosis.The periodic disturbance on orbit can be decoupled with fault by resorting to the fitting and memory ability of neural network.Subsequently,the fault diagnosis scheme is established based on the idea of information fusion.The data of spacecraft attitude and gimbals position are combined to implement fault isolation and estimation based on adaptive estimator and neural network.Then,an adaptive sliding mode controller incorporating the disturbance and fault estimation results is designed to achieve active fault-tolerant control.In addition,the paper gives the proof of the stability of the proposed schemes,and the simulation results show that the proposed scheme achieves better diagnosis and control results than compared algorithm.
基金supported by the National Key Research and Development Program of China(2019YFA0210104)the National Natural Science Foundation of China(81971701)the Natural Science Foundation of Jiangsu Province(BK20201352)。
文摘Recently,rapid advances in flexible strain sensors have broadened their application scenario in monitoring of various mechanophysiological signals.Among various strain sensors,the crack-based strain sensors have drawn increasing attention in monitoring subtle mechanical deformation due to their high sensitivity.However,early generation and rapid propagation of cracks in the conductive sensing layer result in a narrow working range,limiting their application in monitoring large biomechanical signals.Herein,we developed a stress-deconcentrated ultrasensitive strain(SDUS)sensor with ultrahigh sensitivity(gauge factor up to2.3×10^(6))and a wide working range(0%-50%)via incorporating notch-insensitive elastic substrate and microcrack-tunable conductive layer.Furthermore,the highly elastic amine-based polymer-modified polydimethylsiloxane substrate without obvious hysteresis endows our SDUS sensor with a rapid response time(2.33 ms)to external stimuli.The accurate detection of the radial pulse,joint motion,and vocal cord vibration proves the capability of SDUS sensor for healthcare monitoring and human-machine communications.