Objective: To explore the mechanism of Chuanxiong in alleviating hypoxic pulmonary hypertension in rats by inhibiting pulmonary vascular remodeling. Methods: Thirty healthy and clean male SD rats weighing (180 - 220) ...Objective: To explore the mechanism of Chuanxiong in alleviating hypoxic pulmonary hypertension in rats by inhibiting pulmonary vascular remodeling. Methods: Thirty healthy and clean male SD rats weighing (180 - 220) g were randomly divided into three groups (n = 10): normoxia group (n), hypoxia group (H) and Chuanxiong group (L). Group N was fed in normoxic environment, and the other two groups were fed in hypoxic (9% 11% O2) environment for 4 weeks, 8 h/D, 6 days a week. Rats in group L were gavaged with Ligusticum chuanxiong solution diluted with normal saline at the concentration of 300 mg/kg, and rats in group H were gavaged with equal volume of normal saline. After 4 weeks, the mean pulmonary artery pressure was measured. After pulmonary perfusion, the right ventricular free wall and left ventricle plus ventricular septum were taken to measure the right ventricular hypertrophy index. The changes of pulmonary morphology and ultrastructure were observed under light microscope. Results: Compared with group n, the average pulmonary artery pressure and right ventricular hypertrophy index in the other two groups increased, and the thickening of pulmonary vascular wall was obvious under microscope (P Conclusion: Ligusticum chuanxiong can relieve pulmonary artery pressure in rats by inhibiting pulmonary vascular remodeling.展开更多
Chen's technique of computing synthetic seismograms, which decomposes every vector with a set of basis of orthogonality and completeness before applying the Luco-Apsel-Chen (LAC) generalized reflection and transmis...Chen's technique of computing synthetic seismograms, which decomposes every vector with a set of basis of orthogonality and completeness before applying the Luco-Apsel-Chen (LAC) generalized reflection and transmission coefficients method, is confirmed to be efficient in dealing with elastic waves in multi-layered media and accurate in any frequency range. In this article, we extend Chen's technique to the computation of coupled seismic and electromagnetic (EM) waves in layered porous media. Expanding the involved mechanical and electromagnetic fields by a set of scalar and vector wave-function basis, we obtain the fundamental equations which are subsequently solved by using a recently developed version of the LAC generalized reflection and transmission coefficients method. Our approach and corresponding program is validated by reciprocity tests. We also show a numerical example of a two-layer model with an explosion source. The P-to-EM conversion waves radiated from the interface may have potential application.展开更多
Apoptosis has been considered as the only form of regulated cell death for a long time. However, a novel form of programmed cell death called necroptosis was recently reported. The process of necroptosis is regulated ...Apoptosis has been considered as the only form of regulated cell death for a long time. However, a novel form of programmed cell death called necroptosis was recently reported. The process of necroptosis is regulated and plays a critical role in the occurrence and development of multiple human diseases. Thus,the study on the molecular mechanism of necroptosis and its effective inhibitors has been an attractive field for researchers. Herein, we introduce the molecular mechanism of necroptosis and focus on the literature about necroptosis drug screening in recent years. In addition, the identification of the critical drug targets of the necroptosis is also discussed.展开更多
Astragali Radix(AR)is a clinically used herbal medicine with multiple immunomodulatory activities that can strengthen the activity and cytotoxicity of natural killer(NK)cells.However,owing to the complexity of its com...Astragali Radix(AR)is a clinically used herbal medicine with multiple immunomodulatory activities that can strengthen the activity and cytotoxicity of natural killer(NK)cells.However,owing to the complexity of its composition,the specific active ingredients in AR that act on NK cells are not clear yet.Cell membrane chromatography(CMC)is mainly used to screen the active ingredients in a complex system of herbal medicines.In this study,a new comprehensive two-dimensional(2D)NK-92MI CMC/C18 column/time-of-flight mass spectrometry(TOFMS)system was established to screen for potential NK cell activators.To obtain a higher column efficiency,3-mercaptopropyltrimethoxysilane-modified silica was synthesized to prepare the NK-92MI CMC column.In total,nine components in AR were screened from this system,which could be washed out from the NK-92MI/CMC column after 10 min,and they showed good affinity for NK-92MI/CMC column.Two representative active compounds of AR,isoastragaloside Ⅰ and astragaloside IV,promoted the killing effect of NK cells on K562 cells in a dose-dependent manner.It can thus suggest that isoastragaloside Ⅰ and astragaloside Ⅳ are the main immunomodulatory components of AR.This comprehensive 2D NK-92MI CMC analytical system is a practical method for screening immune cell activators from other herbal medicines with immunomodulatory effects.展开更多
In this study, we preliminarily investigated the dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake by using an extended boundary integral equation method, in which the effect of ground surface can be exa...In this study, we preliminarily investigated the dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake by using an extended boundary integral equation method, in which the effect of ground surface can be exactly included. Parameters for numerical modeling were carefully assigned based on previous studies. Numerical results indicated that, although many simplifications are assumed, such as the fault plane is planar and all heterogeneities are neglected, distribution of slip is still consistent roughly with the results of kinematic inversion, implying that for earthquakes in which ruptures run up directly to the ground surface, the dynamic processes are controlled by geometry of the fault to a great extent. By taking the common feature inferred by various kinematic inversion studies as a restriction, we found that the critical slip-weakening distance Dc should locate in a narrow region [60 cm, 70 cm], and supershear rupture might occur during this earthquake, if the initial shear stress before the mainshock is close to the local shear strength.展开更多
The pioneer study of simulating the wave field in media with irregular interface belongs to Aki and Lamer. Since that many numerical methods on the subject have been developed, such as pure numerical techniques, ray m...The pioneer study of simulating the wave field in media with irregular interface belongs to Aki and Lamer. Since that many numerical methods on the subject have been developed, such as pure numerical techniques, ray method and boundary method. The boundary method based on boundary integral equation is a semi-analytical method which is suitable to modeling wave field induced by irregular border. According to the property of the applied Green's function the boundary methods can be sorted into space domain boundary method and wavenumber domain boundary method. For both of them it is necessary to solve a large equation, which means much computation is needed. Thus, it is difficult for the boundary methods to be applied in simulating wave field with high frequency or in large range. To develop a new method with less computation is meaningful. For this purpose, localized boundary integral equation, i.e., discrete wavenumber method is proposed. It is rooted in the Bouchon-Campillo method, an important wavenumber domain boundary method. Firstly the force on interface is separated into two parts: one is on flat part and the other on irregular part of the interface. Then Fourier transform is applied to identify their relation, the unknown distributes only on irregular part. Consequently computation efficiency is dramatically improved. Importantly its accuracy is the same as that of Bouchon-Campillo.展开更多
The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic haz- ar...The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic haz- ard, we simulated the strong ground motions from a rep- resentative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408-1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337-353, 2006), Zhang et al. (Geophys J Int 190(1):358-378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy con- centrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the moun- tain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.展开更多
The finite difference method(FDM)is an important numerical approach for simulating the propagation of seismic waves,and some FDMs can be used to study the impact of the Earth’s curvature and topography over large dis...The finite difference method(FDM)is an important numerical approach for simulating the propagation of seismic waves,and some FDMs can be used to study the impact of the Earth’s curvature and topography over large distances.To efficiently model the effects of the Earth’s irregular topography on the propagation of seismic waves,here we optimize a previously proposed grid mesh method and develop a novel two-dimensional boundary-conforming FDM based on a curvilinear polar coordinate system.This method efficiently simulates the propagation of seismic waves in an arc-shaped model with large variations in surface topography.Our method was benchmarked against other reported methods using several global-scale models.The consistency of the results confirms the validity of our proposed optimization strategy.Furthermore,our findings indicate that the proposed optimization strategy improves computational efficiency.展开更多
After several rounds of phased ups and downs of development,rural animal husbandry finally presents a shrinking and depressed development situation under the comprehensive action of the failure of transformation and u...After several rounds of phased ups and downs of development,rural animal husbandry finally presents a shrinking and depressed development situation under the comprehensive action of the failure of transformation and upgrading and the increasing production costs and breeding risks.Actively exploring and guiding the healthy and sound development of rural animal husbandry is not only an important measure to promote the construction of ecological agriculture,but also the main starting point to realize the revitalization of rural industry.This paper analyzes the present situation of the development of rural animal husbandry in recent years,the influence of animal husbandry on the construction of ecological agriculture and the revitalization of rural industry,and puts forward the corresponding measures,in order to promote the steady and efficient development of animal husbandry in the grand strategy of revitalizing rural industry.展开更多
With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better loca...With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better locate earthquakes and invert their source mechanisms by fitting synthetics to observed waveforms. In this study, we develop an approach to determine both the earthquake location and source mechanism from waveform information. The observed waveforms are filtered in different frequency bands and separated into windows for the individual phases. Instead of picking the arrival times, the traveltime differences are measured by cross-correlation between synthetic waveforms based on the 3D Earth model and observed waveforms. The earthquake location is determined by minimizing the cross-correlation traveltime differences. We then fix the horizontal location of the earthquake and perform a grid search in depth to determine the source mechanism at each point by fitting the synthetic and observed waveforms. This new method is verified by a synthetic test with noise added to the synthetic waveforms and a realistic station distribution. We apply this method to a series of Mw3.4-5.6 earthquakes in the Longmenshan fault (LMSF) zone, a region with rugged topography between the eastern margin of the Tibetan plateau and the western part of the Sichuan basin. The results show that our solutions result in improved waveform fits compared to the source parameters from the catalogs we used and the location can be better constrained than the amplitude-only approach. Furthermore, the source solutions with realistic topography provide a better fit to the observed waveforms than those without the topography, indicating the need to take the topography into account in regions with rugged topography.展开更多
In this paper, we apply particle swarm opti- mization (PSO), an artificial intelligence technique, to velocity calibration in microseismic monitoring. We ran simulations with four 1-D layered velocity models and thr...In this paper, we apply particle swarm opti- mization (PSO), an artificial intelligence technique, to velocity calibration in microseismic monitoring. We ran simulations with four 1-D layered velocity models and three different initial model ranges. The results using the basic PSO algorithm were reliable and accurate for simple models, but unsuccessful for complex models. We propose the staged shrinkage strategy (SSS) for the PSO algorithm. The SSS-PSO algorithm produced robust inversion results and had a fast convergence rate. We investigated the effects of PSO's velocity clamping factor in terms of the algorithm reliability and computational efficiency. The velocity clamping factor had little impact on the reliability and efficiency of basic PSO, whereas it had a large effect on the efficiency of SSS-PSO. Reassuringly, SSS-PSO exhibits marginal reliability fluctuations, which suggests that it can be confidently implemented.展开更多
In 3D frequency domain seismic forward and inversion calculation,the huge amount of calculation and storage is one of the main factors that restrict the processing speed and calculation efficiency.The frequency domain...In 3D frequency domain seismic forward and inversion calculation,the huge amount of calculation and storage is one of the main factors that restrict the processing speed and calculation efficiency.The frequency domain finite-difference forward simulation algorithm based on the acoustic wave equation establishes a large bandwidth complex matrix according to the discretized acoustic wave equation,and then the frequency domain wave field value is obtained by solving the matrix equation.In this study,the predecessor's optimized five-point method is extended to a 3D seven-point finite-difference scheme,and then a perfectly matched layer absorbing boundary condition(PML)is added to establish the corresponding matrix equation.In order to solve the complex matrix,we transform it to the equivalent real number domain to expand the solvable range of the matrix,and establish two objective functions to transform the matrix solving problem into an optimization problem that can be solved using gradient methods,and then use conjugate gradient algorithm to solve the problem.Previous studies have shown that in the conjugate gradient algorithm,the product of the matrix and the vector is the main factor that affects the calculation efficiency.Therefore,this study proposes a method that transform bandwidth matrix and vector product problem into some equivalent vector and vector product algorithm,thereby reducing the amount of calculation and storage.展开更多
In this study, we determined fnax from near- field accelerograms of the Lushan earthquake of April 20, 2013 through spectra analysis. The result shows that the values of fmax derived from five different seismography s...In this study, we determined fnax from near- field accelerograms of the Lushan earthquake of April 20, 2013 through spectra analysis. The result shows that the values of fmax derived from five different seismography stations are very close though these stations roughly span about 100 km along the strike. This implies that the cause offmax is mainly the seismic source process rather than the site effect. Moreover, according to the source-cause model of Papageorgiou and Aki (Bull Seism Soc Am 73:693-722, 1983), we infer that the cohesive zone width of the rupture of the Lushan earthquake is about 204 with an uncertainty of 13 m. We also find that there is a significant bulge between 30 and 45 Hz in the amplitude spectra of accel- erograms of stations 51YAL and 51QLY, and we confirm that it is due to seismic waves' reverberation of the sedi- mentary soil layer beneath these stations.展开更多
Therapeutic drug monitoring(TDM)has played an important role in clinical medicine for precise dosing.Currently,chromatographic technology and immunoassay detection are widely used in TDM and have met most of the needs...Therapeutic drug monitoring(TDM)has played an important role in clinical medicine for precise dosing.Currently,chromatographic technology and immunoassay detection are widely used in TDM and have met most of the needs of clinical drug therapy.However,some problems still exist in practical applications,such as complicated operation and the influence of endogenous substances.Surface plasmon resonance(SPR)has been applied to detect the concentrations of small molecules,including pesticide residues in crops and antibiotics in milk,which indicates its potential for in vivo drug detection.In this study,a new SPR-based biosensor for detecting chloramphenicol(CAP)in blood samples was developed and validated using methodological verification,including precision,accuracy,matrix effect,and extraction recovery rate,and compared with the classic ultra-performance liquid chromatographyultraviolet(UPLC-UV)method.The detection range of SPR was 0.1-50 ng/mL and the limit of detection was 0.099±0.023 ng/mL,which was lower than that of UPLC-UV.The intra-day and inter-day accuracies of SPR were 98%-114% and 110%-122%,which met the analysis requirement.The results show that the SPR biosensor is identical to UPLC-UV in the detection of CAP in rat blood samples;moreover,the SPR biosensor has better sensitivity.Therefore,the present study shows that SPR technology can be used for the detection of small molecules in the blood samples and has the potential to become a method for therapeutic drug monitoring.展开更多
The combination of nano sizes,large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks(MOFs).Herein,a water-based strategy is prop...The combination of nano sizes,large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks(MOFs).Herein,a water-based strategy is proposed for the synthesis of nanoscale hierarchical MOFs(NH-MOFs)with high crystallinity and excellent stability.This approach allows the morphology and porosity of MOFs to be fine tuned,thereby enabling the nanoscale crystal generation and a well-defined hierarchical system.The aqueous solution facilitates rapid nucleation kinetics,and the introduced modulator acts as a deprotonation agent to accelerate the deprotonation of the organic ligand as well as a structure-directing agent(SDA)to guide the formation of hierarchical networks.The assynthesized NH-MOFs(NH-ZIF-67)were assessed as efficient adsorbents and heterogeneous catalysts to facilitate the diffusion of guest molecules,outperforming the parent microZIF-67.This study focuses on understanding the NH-MOF growth rules,which could allow tailor-designing NH-MOFs for various functions.展开更多
Taking the combustor composite structure of a high-strength diesel engine as the main research object,dedicated tests have been conducted to verify the accuracy of three distinct cylinder gasket pressure simulation mo...Taking the combustor composite structure of a high-strength diesel engine as the main research object,dedicated tests have been conducted to verify the accuracy of three distinct cylinder gasket pressure simulation models.Using the measured cylinder gasket compression rebound curve,a gasket unit has been designed and manufactured.For this unit,the influence of the bolt pretension,cylinder body and cylinder head material on gasket sealing pressure has been investigated systematically in conditions of thermo-mechanical coupling.The results show that the bolt pretension force is one of the most important factors affecting the cylinder gasket sealing pressure.The change of the body material has little effect on this pressure.The cylinder gasket seal pressure decreases progressively with the reduction of the elastic module of the cylinder head material.展开更多
Bamboos are one of the most beautiful and useful plants on Earth.The genetic background and population structure of bamboos are well known,which helps accelerate the process of artificial domestication of bamboo.Parti...Bamboos are one of the most beautiful and useful plants on Earth.The genetic background and population structure of bamboos are well known,which helps accelerate the process of artificial domestication of bamboo.Partial sequences of six genes involved in nitrogen use efficiency in 32 different bamboo species were analyzed for occurrence of single nucleotide polymorphisms(SNPs).The nucleotide diversityθw and total nucleotide polymorphismsπT of the sequenced DNA regions was 0.05137 and 0.03332,respectively.Bothπnonsyn/πsyn and Ka/Ks values were<1.The nucleotide sequences of these six genes were inferred to be relatively conserved,and the haplotype diversity was relatively high.The results of evolutionary neutrality tests showed that the six genes were in line with neutral evolution,and that the NRT2.1 and AMT2.1 gene sequences may have experienced negative selection.An inter-SNP recombination event at the NRT2.1 gene in the all pooled sample,of all 32 bamboo species was the lowest at 0.0645,whereas the AMT gene recombination events were all>0.1.Estimation and analysis of linkage disequilibrium of five genes revealed that with the increase in nucleotide sequence length,the degree of SNP linkage disequilibrium decreased rapidly.We inferred the population genetic structure of 32 bamboo species based on the SNP loci of six genes with frequencies>18%.32 bamboo species were divided into five categories,which indicated that the combined population of all bamboo species had obvious multivariate characteristics and was heterogeneous;red(Group 1)and green(Group 2)were the main groups.展开更多
Seismic waves generated by an earthquake can produce dynamic perturbations in the Earth’s gravity field before the direct arrival of P-waves.Observations of these so-called prompt elasto-gravity signals by ground-bas...Seismic waves generated by an earthquake can produce dynamic perturbations in the Earth’s gravity field before the direct arrival of P-waves.Observations of these so-called prompt elasto-gravity signals by ground-based gravimeters and broadband seismometers have been reported for some large events,such as the 2011 M_(W)9.1 Tohoku earthquake.Recent studies have introduced prompt gravity strain signals(PGSSs)as a new type of observable seismic gravity perturbation that can be used to measure the spatial gradient of the perturbed gravity field.Theoretically,these types of signals can be recorded by indevelopment instruments termed gravity strainmeters,although no successful detection has been reported as yet.Herein,we propose an efficient approach for PGSSs based on a multilayered spherical Earth model.We compared the simulated waveforms with analytical solutions obtained from a homogeneous half-space model,which has been used in earlier studies.This comparison indicates that the effect of the Earth’s structural stratification is significant.With the help of the new simulation approach,we also demonstrated how the PGSSs depend on the magnitude of the seismic source.We further conducted synthetic tests estimating earthquake magnitude using gravity strain signals to demonstrate the potential application of this type of signal in earthquake early warning systems.These results provide essential information for future studies on the synthesis and application of earthquake-induced gravity strain signals.展开更多
On April 20th, 2013, a strong earthquake (Ms7, China Earthquake Network Center) struck Lushan county of Sichuan province and the quake (hereafter referred to as Lushan earthquake) caused substantial loss of life a...On April 20th, 2013, a strong earthquake (Ms7, China Earthquake Network Center) struck Lushan county of Sichuan province and the quake (hereafter referred to as Lushan earthquake) caused substantial loss of life and damage to infrastructure. Just as the 2008 Ms8 Wenchuan earthquake, the Lushan earthquake also occurred on the Longmenshan fault system. After the Lushan earthquake, preliminary studies of the Lushan earthquake and its pos- sible link to the Wenchuan earthquake have been published in special issues rapidly organized in a few journals such as Seismological Research Letters, Chinese Journal of Geo- physics and Science in China.展开更多
文摘Objective: To explore the mechanism of Chuanxiong in alleviating hypoxic pulmonary hypertension in rats by inhibiting pulmonary vascular remodeling. Methods: Thirty healthy and clean male SD rats weighing (180 - 220) g were randomly divided into three groups (n = 10): normoxia group (n), hypoxia group (H) and Chuanxiong group (L). Group N was fed in normoxic environment, and the other two groups were fed in hypoxic (9% 11% O2) environment for 4 weeks, 8 h/D, 6 days a week. Rats in group L were gavaged with Ligusticum chuanxiong solution diluted with normal saline at the concentration of 300 mg/kg, and rats in group H were gavaged with equal volume of normal saline. After 4 weeks, the mean pulmonary artery pressure was measured. After pulmonary perfusion, the right ventricular free wall and left ventricle plus ventricular septum were taken to measure the right ventricular hypertrophy index. The changes of pulmonary morphology and ultrastructure were observed under light microscope. Results: Compared with group n, the average pulmonary artery pressure and right ventricular hypertrophy index in the other two groups increased, and the thickening of pulmonary vascular wall was obvious under microscope (P Conclusion: Ligusticum chuanxiong can relieve pulmonary artery pressure in rats by inhibiting pulmonary vascular remodeling.
基金supported by the Natural R&D Special Fund for Public Welfare Industry(No.200808069)National Natural Science Foundation of China(Nos.40974038,40774028 and 40821062)
文摘Chen's technique of computing synthetic seismograms, which decomposes every vector with a set of basis of orthogonality and completeness before applying the Luco-Apsel-Chen (LAC) generalized reflection and transmission coefficients method, is confirmed to be efficient in dealing with elastic waves in multi-layered media and accurate in any frequency range. In this article, we extend Chen's technique to the computation of coupled seismic and electromagnetic (EM) waves in layered porous media. Expanding the involved mechanical and electromagnetic fields by a set of scalar and vector wave-function basis, we obtain the fundamental equations which are subsequently solved by using a recently developed version of the LAC generalized reflection and transmission coefficients method. Our approach and corresponding program is validated by reciprocity tests. We also show a numerical example of a two-layer model with an explosion source. The P-to-EM conversion waves radiated from the interface may have potential application.
基金supported by the National Natural Science Foundation of China (Grant No. 81503039)
文摘Apoptosis has been considered as the only form of regulated cell death for a long time. However, a novel form of programmed cell death called necroptosis was recently reported. The process of necroptosis is regulated and plays a critical role in the occurrence and development of multiple human diseases. Thus,the study on the molecular mechanism of necroptosis and its effective inhibitors has been an attractive field for researchers. Herein, we introduce the molecular mechanism of necroptosis and focus on the literature about necroptosis drug screening in recent years. In addition, the identification of the critical drug targets of the necroptosis is also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82073814,81973291,82122066,and 82003909)the Rising-Star Program of Shanghai Science and Technology Committee(Grant No.:19QA1411500).
文摘Astragali Radix(AR)is a clinically used herbal medicine with multiple immunomodulatory activities that can strengthen the activity and cytotoxicity of natural killer(NK)cells.However,owing to the complexity of its composition,the specific active ingredients in AR that act on NK cells are not clear yet.Cell membrane chromatography(CMC)is mainly used to screen the active ingredients in a complex system of herbal medicines.In this study,a new comprehensive two-dimensional(2D)NK-92MI CMC/C18 column/time-of-flight mass spectrometry(TOFMS)system was established to screen for potential NK cell activators.To obtain a higher column efficiency,3-mercaptopropyltrimethoxysilane-modified silica was synthesized to prepare the NK-92MI CMC column.In total,nine components in AR were screened from this system,which could be washed out from the NK-92MI/CMC column after 10 min,and they showed good affinity for NK-92MI/CMC column.Two representative active compounds of AR,isoastragaloside Ⅰ and astragaloside IV,promoted the killing effect of NK cells on K562 cells in a dose-dependent manner.It can thus suggest that isoastragaloside Ⅰ and astragaloside Ⅳ are the main immunomodulatory components of AR.This comprehensive 2D NK-92MI CMC analytical system is a practical method for screening immune cell activators from other herbal medicines with immunomodulatory effects.
基金supported by the National Natural Science Foundation of China under grant Nos.40504004 and 40521002partially by National Basic Research Program of China under grant No.2004CB418404
文摘In this study, we preliminarily investigated the dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake by using an extended boundary integral equation method, in which the effect of ground surface can be exactly included. Parameters for numerical modeling were carefully assigned based on previous studies. Numerical results indicated that, although many simplifications are assumed, such as the fault plane is planar and all heterogeneities are neglected, distribution of slip is still consistent roughly with the results of kinematic inversion, implying that for earthquakes in which ruptures run up directly to the ground surface, the dynamic processes are controlled by geometry of the fault to a great extent. By taking the common feature inferred by various kinematic inversion studies as a restriction, we found that the critical slip-weakening distance Dc should locate in a narrow region [60 cm, 70 cm], and supershear rupture might occur during this earthquake, if the initial shear stress before the mainshock is close to the local shear strength.
基金supported by National Natural Science Foundation of China (Nos.40874027,90715020 and 90915012)IGPCEA(DQJB07B06)Special Public Welfare Industry (Nos.20070804 and 200808008)
文摘The pioneer study of simulating the wave field in media with irregular interface belongs to Aki and Lamer. Since that many numerical methods on the subject have been developed, such as pure numerical techniques, ray method and boundary method. The boundary method based on boundary integral equation is a semi-analytical method which is suitable to modeling wave field induced by irregular border. According to the property of the applied Green's function the boundary methods can be sorted into space domain boundary method and wavenumber domain boundary method. For both of them it is necessary to solve a large equation, which means much computation is needed. Thus, it is difficult for the boundary methods to be applied in simulating wave field with high frequency or in large range. To develop a new method with less computation is meaningful. For this purpose, localized boundary integral equation, i.e., discrete wavenumber method is proposed. It is rooted in the Bouchon-Campillo method, an important wavenumber domain boundary method. Firstly the force on interface is separated into two parts: one is on flat part and the other on irregular part of the interface. Then Fourier transform is applied to identify their relation, the unknown distributes only on irregular part. Consequently computation efficiency is dramatically improved. Importantly its accuracy is the same as that of Bouchon-Campillo.
基金supported by the National Natural Science Foundation under Grant 41090290
文摘The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic haz- ard, we simulated the strong ground motions from a rep- resentative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408-1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337-353, 2006), Zhang et al. (Geophys J Int 190(1):358-378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy con- centrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the moun- tain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.
基金supported by the National Natural Science Foundation of China(No.41790465).
文摘The finite difference method(FDM)is an important numerical approach for simulating the propagation of seismic waves,and some FDMs can be used to study the impact of the Earth’s curvature and topography over large distances.To efficiently model the effects of the Earth’s irregular topography on the propagation of seismic waves,here we optimize a previously proposed grid mesh method and develop a novel two-dimensional boundary-conforming FDM based on a curvilinear polar coordinate system.This method efficiently simulates the propagation of seismic waves in an arc-shaped model with large variations in surface topography.Our method was benchmarked against other reported methods using several global-scale models.The consistency of the results confirms the validity of our proposed optimization strategy.Furthermore,our findings indicate that the proposed optimization strategy improves computational efficiency.
文摘After several rounds of phased ups and downs of development,rural animal husbandry finally presents a shrinking and depressed development situation under the comprehensive action of the failure of transformation and upgrading and the increasing production costs and breeding risks.Actively exploring and guiding the healthy and sound development of rural animal husbandry is not only an important measure to promote the construction of ecological agriculture,but also the main starting point to realize the revitalization of rural industry.This paper analyzes the present situation of the development of rural animal husbandry in recent years,the influence of animal husbandry on the construction of ecological agriculture and the revitalization of rural industry,and puts forward the corresponding measures,in order to promote the steady and efficient development of animal husbandry in the grand strategy of revitalizing rural industry.
基金supported by National Natural Science Foundation of China (Grants No.41374056)the Fundamental Research Funds for the Central Universities (WK2080000053)
文摘With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better locate earthquakes and invert their source mechanisms by fitting synthetics to observed waveforms. In this study, we develop an approach to determine both the earthquake location and source mechanism from waveform information. The observed waveforms are filtered in different frequency bands and separated into windows for the individual phases. Instead of picking the arrival times, the traveltime differences are measured by cross-correlation between synthetic waveforms based on the 3D Earth model and observed waveforms. The earthquake location is determined by minimizing the cross-correlation traveltime differences. We then fix the horizontal location of the earthquake and perform a grid search in depth to determine the source mechanism at each point by fitting the synthetic and observed waveforms. This new method is verified by a synthetic test with noise added to the synthetic waveforms and a realistic station distribution. We apply this method to a series of Mw3.4-5.6 earthquakes in the Longmenshan fault (LMSF) zone, a region with rugged topography between the eastern margin of the Tibetan plateau and the western part of the Sichuan basin. The results show that our solutions result in improved waveform fits compared to the source parameters from the catalogs we used and the location can be better constrained than the amplitude-only approach. Furthermore, the source solutions with realistic topography provide a better fit to the observed waveforms than those without the topography, indicating the need to take the topography into account in regions with rugged topography.
文摘In this paper, we apply particle swarm opti- mization (PSO), an artificial intelligence technique, to velocity calibration in microseismic monitoring. We ran simulations with four 1-D layered velocity models and three different initial model ranges. The results using the basic PSO algorithm were reliable and accurate for simple models, but unsuccessful for complex models. We propose the staged shrinkage strategy (SSS) for the PSO algorithm. The SSS-PSO algorithm produced robust inversion results and had a fast convergence rate. We investigated the effects of PSO's velocity clamping factor in terms of the algorithm reliability and computational efficiency. The velocity clamping factor had little impact on the reliability and efficiency of basic PSO, whereas it had a large effect on the efficiency of SSS-PSO. Reassuringly, SSS-PSO exhibits marginal reliability fluctuations, which suggests that it can be confidently implemented.
基金supported by the National Natural Science Foundation of China(Project U1901602&41790465)Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0203)+2 种基金Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology(Grant No.ZDSYS20190902093007855)Shenzhen Science and Technology Program(Grant No.KQTD20170810111725321)the leading talents of Guangdong province program(Grant No.2016LJ06N652).
文摘In 3D frequency domain seismic forward and inversion calculation,the huge amount of calculation and storage is one of the main factors that restrict the processing speed and calculation efficiency.The frequency domain finite-difference forward simulation algorithm based on the acoustic wave equation establishes a large bandwidth complex matrix according to the discretized acoustic wave equation,and then the frequency domain wave field value is obtained by solving the matrix equation.In this study,the predecessor's optimized five-point method is extended to a 3D seven-point finite-difference scheme,and then a perfectly matched layer absorbing boundary condition(PML)is added to establish the corresponding matrix equation.In order to solve the complex matrix,we transform it to the equivalent real number domain to expand the solvable range of the matrix,and establish two objective functions to transform the matrix solving problem into an optimization problem that can be solved using gradient methods,and then use conjugate gradient algorithm to solve the problem.Previous studies have shown that in the conjugate gradient algorithm,the product of the matrix and the vector is the main factor that affects the calculation efficiency.Therefore,this study proposes a method that transform bandwidth matrix and vector product problem into some equivalent vector and vector product algorithm,thereby reducing the amount of calculation and storage.
基金supported by the National Nature Science Foundation of China(Grant numbers:41090293,41274053)
文摘In this study, we determined fnax from near- field accelerograms of the Lushan earthquake of April 20, 2013 through spectra analysis. The result shows that the values of fmax derived from five different seismography stations are very close though these stations roughly span about 100 km along the strike. This implies that the cause offmax is mainly the seismic source process rather than the site effect. Moreover, according to the source-cause model of Papageorgiou and Aki (Bull Seism Soc Am 73:693-722, 1983), we infer that the cohesive zone width of the rupture of the Lushan earthquake is about 204 with an uncertainty of 13 m. We also find that there is a significant bulge between 30 and 45 Hz in the amplitude spectra of accel- erograms of stations 51YAL and 51QLY, and we confirm that it is due to seismic waves' reverberation of the sedi- mentary soil layer beneath these stations.
基金sponsored by the National Natural Science Foundation of China(Grant No.:82174092)Science and Technology Commission of Shanghai Municipality(Grant No.:21ZR1483000)Shanghai Pujiang Program(Grant No.:21PJD083).
文摘Therapeutic drug monitoring(TDM)has played an important role in clinical medicine for precise dosing.Currently,chromatographic technology and immunoassay detection are widely used in TDM and have met most of the needs of clinical drug therapy.However,some problems still exist in practical applications,such as complicated operation and the influence of endogenous substances.Surface plasmon resonance(SPR)has been applied to detect the concentrations of small molecules,including pesticide residues in crops and antibiotics in milk,which indicates its potential for in vivo drug detection.In this study,a new SPR-based biosensor for detecting chloramphenicol(CAP)in blood samples was developed and validated using methodological verification,including precision,accuracy,matrix effect,and extraction recovery rate,and compared with the classic ultra-performance liquid chromatographyultraviolet(UPLC-UV)method.The detection range of SPR was 0.1-50 ng/mL and the limit of detection was 0.099±0.023 ng/mL,which was lower than that of UPLC-UV.The intra-day and inter-day accuracies of SPR were 98%-114% and 110%-122%,which met the analysis requirement.The results show that the SPR biosensor is identical to UPLC-UV in the detection of CAP in rat blood samples;moreover,the SPR biosensor has better sensitivity.Therefore,the present study shows that SPR technology can be used for the detection of small molecules in the blood samples and has the potential to become a method for therapeutic drug monitoring.
基金the National Key Research and Development Program(2019YFC1805804)the National Natural Science Foundation of China(22008032)+3 种基金the Guangdong Natural Science Foundation(2022A1515011192)the Guangdong Basic and Applied Basic Research Foundation(2019A1515110706)the Guangdong Provincial Key Lab of Green Chemical Product Technology(GC202111)the China Postdoctoral Science Foundation(2021M691059).
文摘The combination of nano sizes,large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks(MOFs).Herein,a water-based strategy is proposed for the synthesis of nanoscale hierarchical MOFs(NH-MOFs)with high crystallinity and excellent stability.This approach allows the morphology and porosity of MOFs to be fine tuned,thereby enabling the nanoscale crystal generation and a well-defined hierarchical system.The aqueous solution facilitates rapid nucleation kinetics,and the introduced modulator acts as a deprotonation agent to accelerate the deprotonation of the organic ligand as well as a structure-directing agent(SDA)to guide the formation of hierarchical networks.The assynthesized NH-MOFs(NH-ZIF-67)were assessed as efficient adsorbents and heterogeneous catalysts to facilitate the diffusion of guest molecules,outperforming the parent microZIF-67.This study focuses on understanding the NH-MOF growth rules,which could allow tailor-designing NH-MOFs for various functions.
基金the Medium and Heavy Duty High Power-Density Clean Energy Power of National 863 Project。
文摘Taking the combustor composite structure of a high-strength diesel engine as the main research object,dedicated tests have been conducted to verify the accuracy of three distinct cylinder gasket pressure simulation models.Using the measured cylinder gasket compression rebound curve,a gasket unit has been designed and manufactured.For this unit,the influence of the bolt pretension,cylinder body and cylinder head material on gasket sealing pressure has been investigated systematically in conditions of thermo-mechanical coupling.The results show that the bolt pretension force is one of the most important factors affecting the cylinder gasket sealing pressure.The change of the body material has little effect on this pressure.The cylinder gasket seal pressure decreases progressively with the reduction of the elastic module of the cylinder head material.
基金This study was financially supported by the National Natural Science Foundation of China(41301346)the Natural Science Foundation of Fujian Province(2020J01375)the Natural Science Foundation of Fujian Province(2015N0034).
文摘Bamboos are one of the most beautiful and useful plants on Earth.The genetic background and population structure of bamboos are well known,which helps accelerate the process of artificial domestication of bamboo.Partial sequences of six genes involved in nitrogen use efficiency in 32 different bamboo species were analyzed for occurrence of single nucleotide polymorphisms(SNPs).The nucleotide diversityθw and total nucleotide polymorphismsπT of the sequenced DNA regions was 0.05137 and 0.03332,respectively.Bothπnonsyn/πsyn and Ka/Ks values were<1.The nucleotide sequences of these six genes were inferred to be relatively conserved,and the haplotype diversity was relatively high.The results of evolutionary neutrality tests showed that the six genes were in line with neutral evolution,and that the NRT2.1 and AMT2.1 gene sequences may have experienced negative selection.An inter-SNP recombination event at the NRT2.1 gene in the all pooled sample,of all 32 bamboo species was the lowest at 0.0645,whereas the AMT gene recombination events were all>0.1.Estimation and analysis of linkage disequilibrium of five genes revealed that with the increase in nucleotide sequence length,the degree of SNP linkage disequilibrium decreased rapidly.We inferred the population genetic structure of 32 bamboo species based on the SNP loci of six genes with frequencies>18%.32 bamboo species were divided into five categories,which indicated that the combined population of all bamboo species had obvious multivariate characteristics and was heterogeneous;red(Group 1)and green(Group 2)were the main groups.
基金This work was supported by the National Natural Science Foundation of China(Nos.U1901602 and 42204060)Guangdong Provincial Key Laboratory of Geophysical High-Resolution Imaging Technology(No.2022B1212010002)+1 种基金Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology(No.ZDSYS20190902093007855)。
文摘Seismic waves generated by an earthquake can produce dynamic perturbations in the Earth’s gravity field before the direct arrival of P-waves.Observations of these so-called prompt elasto-gravity signals by ground-based gravimeters and broadband seismometers have been reported for some large events,such as the 2011 M_(W)9.1 Tohoku earthquake.Recent studies have introduced prompt gravity strain signals(PGSSs)as a new type of observable seismic gravity perturbation that can be used to measure the spatial gradient of the perturbed gravity field.Theoretically,these types of signals can be recorded by indevelopment instruments termed gravity strainmeters,although no successful detection has been reported as yet.Herein,we propose an efficient approach for PGSSs based on a multilayered spherical Earth model.We compared the simulated waveforms with analytical solutions obtained from a homogeneous half-space model,which has been used in earlier studies.This comparison indicates that the effect of the Earth’s structural stratification is significant.With the help of the new simulation approach,we also demonstrated how the PGSSs depend on the magnitude of the seismic source.We further conducted synthetic tests estimating earthquake magnitude using gravity strain signals to demonstrate the potential application of this type of signal in earthquake early warning systems.These results provide essential information for future studies on the synthesis and application of earthquake-induced gravity strain signals.
文摘On April 20th, 2013, a strong earthquake (Ms7, China Earthquake Network Center) struck Lushan county of Sichuan province and the quake (hereafter referred to as Lushan earthquake) caused substantial loss of life and damage to infrastructure. Just as the 2008 Ms8 Wenchuan earthquake, the Lushan earthquake also occurred on the Longmenshan fault system. After the Lushan earthquake, preliminary studies of the Lushan earthquake and its pos- sible link to the Wenchuan earthquake have been published in special issues rapidly organized in a few journals such as Seismological Research Letters, Chinese Journal of Geo- physics and Science in China.