Objective: To observe the analgesic effect of acupuncture and moxibustion on chronic constriction injury (CCI) pain model rats, and to investigate the mechanism of constriction constriction injury. Methods: 32 SPF SD ...Objective: To observe the analgesic effect of acupuncture and moxibustion on chronic constriction injury (CCI) pain model rats, and to investigate the mechanism of constriction constriction injury. Methods: 32 SPF SD rats were divided into Control Group, Sham Surgery Group, Model Group and Acupuncture and moxibustion Group, with 8 rats in each group. The Model Group, Acupuncture and moxibustion Group and sciatic nerve ligation were used to establish the CCI pain rat model. The sham operation group only separated the nerve, and the control group did not do any treatment. After modeling, the Acupuncture and moxibustion Group was given acupuncture treatment, while the control group and the Model Group did not do any intervention. 7 days for 1 course of treatment, continuous treatment for 3 courses of sampling and detection. Paw withdrawal mechanical threshold (PWMT) and Paw withdrawal thermal latency (PWTL) were observed. Biochemical detection of reactive oxygen species (ROS), malondialdehyde (MDA), Super Oxide Dismutase (SOD), glutathione (GSH);Serum, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) levels were detected by ELISA. Results: Compared with the control group, PWMT and PWTL in the Model Group were decreased (P α, IL-1β and IL-6 levels or contents were increased (P α, IL-1β and IL-6 levels or contents were decreased (P Conclusion: Acupuncture and moxibustion can reduce the ROS level, enhance the antioxidant capacity of the body, reduce the damage of sciatic nerve caused by inflammation, and relieve sciatic pain.展开更多
As one of the major threats to the current DeFi(Decentralized Finance)ecosystem,reentrant attack induces data inconsistency of the victim smart contract,enabling attackers to steal on-chain assets from DeFi projects,w...As one of the major threats to the current DeFi(Decentralized Finance)ecosystem,reentrant attack induces data inconsistency of the victim smart contract,enabling attackers to steal on-chain assets from DeFi projects,which could terribly do harm to the confidence of the blockchain investors.However,protecting DeFi projects from the reentrant attack is very difficult,since generating a call loop within the highly automatic DeFi ecosystem could be very practicable.Existing researchers mainly focus on the detection of the reentrant vulnerabilities in the code testing,and no method could promise the non-existent of reentrant vulnerabilities.In this paper,we introduce the database lock mechanism to isolate the correlated smart contract states from other operations in the same contract,so that we can prevent the attackers from abusing the inconsistent smart contract state.Compared to the existing resolutions of front-running,code audit,andmodifier,our method guarantees protection resultswith better flexibility.And we further evaluate our method on a number of de facto reentrant attacks observed from Etherscan.The results prove that our method could efficiently prevent the reentrant attack with less running cost.展开更多
With the increasingly prominent energy and environmental issues,the supercapacitors,as a highly efficient and clean energy conversion and storage devices,meet the requirements well.However,it is still a challenge to e...With the increasingly prominent energy and environmental issues,the supercapacitors,as a highly efficient and clean energy conversion and storage devices,meet the requirements well.However,it is still a challenge to enhance the capacitance and energy density of supercapacitors.A novel and highly conductive dodecaborate/MXene composites have been designed for high performance supercapacitors.The surface charge property of MXene was modified by a simple ultrasonic treatment with ammonium ion,and the dodecaborate ion can be inserted into the inner surface of MXene by electrostatic adsorption.Due to the unique icosahedral cage conjugate structure formed by the B-B bond and the highly delocalized three-dimensionalπbond structure of the electrons,the negative charge is delocalied on the whole dodecaborate ion,which reduces the ability to bind to cations.Therefore,the cations can move easily,and the dodecaborate can act as a“lubricant”for ion diffusion between the MXene layers,which significantly improves the ion transfer rate of supercapacitors.The dodecaborate/MXene composites can achieve an extremely high specific capacitance of 366 F.g^-1 at a scan rate of 2 mV.s^-1,which is more than eight times higher than that of MXene(43 F1-)at the same scan rate.Our finding provides a novel route on the fabrication of the high performance supercapacitors.展开更多
A highly hierarchically ordered macroporous-mesoporous Ce0.4Zr0.602 solid solution with crystalline framework walls was directly and simply prepared using polystyrene (PS) microspheres and a block copolymer as dual ...A highly hierarchically ordered macroporous-mesoporous Ce0.4Zr0.602 solid solution with crystalline framework walls was directly and simply prepared using polystyrene (PS) microspheres and a block copolymer as dual templates. The PS microspheres and block copolymer were assembled into colloidal crystals and mesoscopic rod-like micelles as macroporous and mesoporous templates, respectively, by a one-step process. This process offers a facile method to prepare hierarchically ordered porous materials. Compared to commercial ceria, the macroporous-mesoporous Ce0.4Zr0.602 material significantly improved the ultraviolet resistance and mechanical performance of a polysulfide polymer. Because the ordered macroporous-mesoporous Ce0.4Zr0.602 can disperse uniformly in the polysulfide polymer based on the open macroporous structure for diffusion and mobility and mesoporous structure for high surface areas. Furthermore, these results show that better-performing polysulfide polymers can be achieved by adding hierarchically structured materials.展开更多
文摘Objective: To observe the analgesic effect of acupuncture and moxibustion on chronic constriction injury (CCI) pain model rats, and to investigate the mechanism of constriction constriction injury. Methods: 32 SPF SD rats were divided into Control Group, Sham Surgery Group, Model Group and Acupuncture and moxibustion Group, with 8 rats in each group. The Model Group, Acupuncture and moxibustion Group and sciatic nerve ligation were used to establish the CCI pain rat model. The sham operation group only separated the nerve, and the control group did not do any treatment. After modeling, the Acupuncture and moxibustion Group was given acupuncture treatment, while the control group and the Model Group did not do any intervention. 7 days for 1 course of treatment, continuous treatment for 3 courses of sampling and detection. Paw withdrawal mechanical threshold (PWMT) and Paw withdrawal thermal latency (PWTL) were observed. Biochemical detection of reactive oxygen species (ROS), malondialdehyde (MDA), Super Oxide Dismutase (SOD), glutathione (GSH);Serum, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) levels were detected by ELISA. Results: Compared with the control group, PWMT and PWTL in the Model Group were decreased (P α, IL-1β and IL-6 levels or contents were increased (P α, IL-1β and IL-6 levels or contents were decreased (P Conclusion: Acupuncture and moxibustion can reduce the ROS level, enhance the antioxidant capacity of the body, reduce the damage of sciatic nerve caused by inflammation, and relieve sciatic pain.
基金supported byNationalKeyResearch andDevelopment Plan(Grant No.2018YFB1800701)Key-Area Research and Development Program of Guangdong Province 2020B0101090003,CCF-NSFOCUS Kunpeng Scientific Research Fund(CCF-NSFOCUS 2021010)+2 种基金National Natural Science Foundation of China(Grant Nos.61902083,62172115,61976064)Guangdong Higher Education Innovation Group 2020KCXTD007 and Guangzhou Higher Education Innovation Group(No.202032854)Guangzhou Fundamental Research Plan of“Municipalschool”Jointly Funded Projects(No.202102010445).
文摘As one of the major threats to the current DeFi(Decentralized Finance)ecosystem,reentrant attack induces data inconsistency of the victim smart contract,enabling attackers to steal on-chain assets from DeFi projects,which could terribly do harm to the confidence of the blockchain investors.However,protecting DeFi projects from the reentrant attack is very difficult,since generating a call loop within the highly automatic DeFi ecosystem could be very practicable.Existing researchers mainly focus on the detection of the reentrant vulnerabilities in the code testing,and no method could promise the non-existent of reentrant vulnerabilities.In this paper,we introduce the database lock mechanism to isolate the correlated smart contract states from other operations in the same contract,so that we can prevent the attackers from abusing the inconsistent smart contract state.Compared to the existing resolutions of front-running,code audit,andmodifier,our method guarantees protection resultswith better flexibility.And we further evaluate our method on a number of de facto reentrant attacks observed from Etherscan.The results prove that our method could efficiently prevent the reentrant attack with less running cost.
基金support from the National Natural Science Foundation of China(No.61674109)the National Key R&D Program of China(No.2016YFA0202400)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20170059)the Beijing Natural Science Foundation(No.2182061)Science Foundation of China University of Petroleum,Beijing(No.2462019BJRC001)funded by the Collaborative Innovation Center of Suzhou Nano Science and Technology,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘With the increasingly prominent energy and environmental issues,the supercapacitors,as a highly efficient and clean energy conversion and storage devices,meet the requirements well.However,it is still a challenge to enhance the capacitance and energy density of supercapacitors.A novel and highly conductive dodecaborate/MXene composites have been designed for high performance supercapacitors.The surface charge property of MXene was modified by a simple ultrasonic treatment with ammonium ion,and the dodecaborate ion can be inserted into the inner surface of MXene by electrostatic adsorption.Due to the unique icosahedral cage conjugate structure formed by the B-B bond and the highly delocalized three-dimensionalπbond structure of the electrons,the negative charge is delocalied on the whole dodecaborate ion,which reduces the ability to bind to cations.Therefore,the cations can move easily,and the dodecaborate can act as a“lubricant”for ion diffusion between the MXene layers,which significantly improves the ion transfer rate of supercapacitors.The dodecaborate/MXene composites can achieve an extremely high specific capacitance of 366 F.g^-1 at a scan rate of 2 mV.s^-1,which is more than eight times higher than that of MXene(43 F1-)at the same scan rate.Our finding provides a novel route on the fabrication of the high performance supercapacitors.
文摘A highly hierarchically ordered macroporous-mesoporous Ce0.4Zr0.602 solid solution with crystalline framework walls was directly and simply prepared using polystyrene (PS) microspheres and a block copolymer as dual templates. The PS microspheres and block copolymer were assembled into colloidal crystals and mesoscopic rod-like micelles as macroporous and mesoporous templates, respectively, by a one-step process. This process offers a facile method to prepare hierarchically ordered porous materials. Compared to commercial ceria, the macroporous-mesoporous Ce0.4Zr0.602 material significantly improved the ultraviolet resistance and mechanical performance of a polysulfide polymer. Because the ordered macroporous-mesoporous Ce0.4Zr0.602 can disperse uniformly in the polysulfide polymer based on the open macroporous structure for diffusion and mobility and mesoporous structure for high surface areas. Furthermore, these results show that better-performing polysulfide polymers can be achieved by adding hierarchically structured materials.