Low temperature usually results in the developmental deformity of flower organs,immensely affecting the quality of rose flowers.However,it's largely unknown about the regulatory mechanisms activated by low tempera...Low temperature usually results in the developmental deformity of flower organs,immensely affecting the quality of rose flowers.However,it's largely unknown about the regulatory mechanisms activated by low temperature.Here,we used a low temperature-sensitive Rosa hybrida cv.‘Peach Avalanche’to screen a MADS-box gene RhAGL6 via conjoint analysis between RNA sequencing(RNA-seq)and whole-genome bisulfite sequencing(WGBS).Furthermore,we found that low temperature induced the hypermethylation and elevated histone 3 lys-27 trimethylation(H3K27me3)level on the RhAGL6 promoter,leading to decreased RhAGL6 expression.In addition,RhAGL6 silencing resulted in the formation of abnormal receptacles.We also found that the levels of gibberellins(GA3)and abscisic acid(ABA)in the receptacle under low temperature were lower and higher,respectively,than under normal temperature.Promoter activity analysis revealed that GA3 significantly activated RhAGL6 promoter activity,whereas ABA inhibited it.Thus,we propose that RhAGL6 regulates rose receptacle development by integrating epigenetic regulation and phytohormones signaling at low temperature.展开更多
Background:Myocardial infarction(MI)is an acute condition in which the heart mus-cle dies due to the lack of blood supply.Previous research has suggested that au-tophagy and angiogenesis play vital roles in the preven...Background:Myocardial infarction(MI)is an acute condition in which the heart mus-cle dies due to the lack of blood supply.Previous research has suggested that au-tophagy and angiogenesis play vital roles in the prevention of heart failure after MI,and miR-106a is considered to be an important regulatory factor in MI.But the specific mechanism remains unknown.In this study,using cultured venous endothelial cells and a rat model of MI,we aimed to identify the potential target genes of miR-106a and discover the mechanisms of inhibiting autophagy and angiogenesis.Methods:We first explored the biological functions of miR-106a on autophagy and angiogenesis on endothelial cells.Then we identified ATG7,which was the down-stream target gene of miR-106a.The expression of miR-106a and ATG7 was investi-gated in the rat model of MI.Results:We found that miR-106a inhibits the proliferation,cell cycle,autophagy and angiogenesis,but promoted the apoptosis of vein endothelial cells.Moreover,ATG7 was identified as the target of miR-106a,and ATG7 rescued the inhibition of autophagy and angiogenesis by miR-106a.The expression of miR-106a in the rat model of MI was decreased but the expression of ATG7 was increased in the infarction areas.Conclusion:Our results indicate that miR-106a may inhibit autophagy and angiogenesis by targeting ATG7.This mechanism may be a potential therapeutic treatment for MI.展开更多
The oil and gas potential of the Yan'an Formation in the Ordos Basin has yet to be fully tapped. In this study, the pore structure, mobile fluid saturation, and water flooding micro-mechanism of the Yan'an For...The oil and gas potential of the Yan'an Formation in the Ordos Basin has yet to be fully tapped. In this study, the pore structure, mobile fluid saturation, and water flooding micro-mechanism of the Yan'an Formation sandstone are systematically studied through the application of a series of rock physics and fluid experiments. The results show that there is a good positive correlation between porosity and permeability, and the reservoirs are divided into types Ⅰ, Ⅱ, and Ⅲ. Mercury injection tests show that the average pore throat radius of the oil-bearing reservoir ranges from 1 to 7 μm. The displacement pressure of the Yan'an Formation is also relatively low, and it decreases from 0.1 MPa to 0.01 MPa as the rock porosity increases from 11% to 18%. NMR tests show that small (diameter <0.5 μm) and medium pores (diameter ranging from 0.5 to 2.5 μm) are predominant in the reservoir. Different types of reservoirs have different characteristics of relative permeability curve. In addition, when the average oil recovery rate is less than 1 ml/min, the oil displacement efficiency increases faster. However, when the average oil recovery rate is between 1–3.5 ml/min, the oil displacement efficiency is maintained at around 27%–30%. Physical properties of the reservoir, pore-throat structure, experimental pressure difference, and pore volume injected — all have significant effects on oil displacement efficiency. For Type Ⅰ and Type Ⅱ reservoirs, the increase of the pore volume injected has a significant effect on oil displacement efficiency. However, for Type Ⅲ reservoirs, the change of pore volume injected has insignificant effect on oil displacement efficiency. This study provides a reference for the formulation of estimated ultimate recovery (EUR) measures for similar sandstone reservoirs.展开更多
Aquaporins(AQPs)are one of the most ancient superfamily proteins,which are essential for maintaining the fluid homeostasis of most organisms against various environments.Here,the latest findings for function of AQPs i...Aquaporins(AQPs)are one of the most ancient superfamily proteins,which are essential for maintaining the fluid homeostasis of most organisms against various environments.Here,the latest findings for function of AQPs in cell signal transduction in plants are summarized.We also put forward several issues that still need to be addressed in the future.展开更多
The widespread usage of Cyber Physical Systems(CPSs)generates a vast volume of time series data,and precisely determining anomalies in the data is critical for practical production.Autoencoder is the mainstream method...The widespread usage of Cyber Physical Systems(CPSs)generates a vast volume of time series data,and precisely determining anomalies in the data is critical for practical production.Autoencoder is the mainstream method for time series anomaly detection,and the anomaly is judged by reconstruction error.However,due to the strong generalization ability of neural networks,some abnormal samples close to normal samples may be judged as normal,which fails to detect the abnormality.In addition,the dataset rarely provides sufficient anomaly labels.This research proposes an unsupervised anomaly detection approach based on adversarial memory autoencoders for multivariate time series to solve the above problem.Firstly,an encoder encodes the input data into low-dimensional space to acquire a feature vector.Then,a memory module is used to learn the feature vector’s prototype patterns and update the feature vectors.The updating process allows partial forgetting of information to prevent model overgeneralization.After that,two decoders reconstruct the input data.Finally,this research uses the Peak Over Threshold(POT)method to calculate the threshold to determine anomalous samples from normal samples.This research uses a two-stage adversarial training strategy during model training to enlarge the gap between the reconstruction error of normal and abnormal samples.The proposed method achieves significant anomaly detection results on synthetic and real datasets from power systems,water treatment plants,and computer clusters.The F1 score reached an average of 0.9196 on the five datasets,which is 0.0769 higher than the best baseline method.展开更多
MicroRNAs(miRNAs) are critical regulators of the host immune and inflammatory response against bacterial pathogens. In the present review, we discuss target genes, target gene functions, the potential regulatory role ...MicroRNAs(miRNAs) are critical regulators of the host immune and inflammatory response against bacterial pathogens. In the present review, we discuss target genes, target gene functions, the potential regulatory role of miRNAs in periodontal tissues, and the potential role of miRNAs as biomarkers and therapeutics. In periodontal disease, miRNAs exert control over all aspects of innate and adaptive immunity, including the functions of neutrophils, macrophages, dendritic cells and T and B cells. Previous human studies have highlighted some key miRNAs that are dysregulated in periodontitis patients. In the present study, we mapped the major miRNAs that were altered in our reproducible periodontitis mouse model relative to control animals. The miRNAs that were upregulated as a result of periodontal disease in both human and mouse studies included miR-15 a, miR-29 b, miR-125 a, miR-146 a,miR-148/148 a and miR-223, whereas miR-92 was downregulated. The association of individual miRNAs with unique aspects of periodontal disease and their stability in gingival crevicular fluid underscores their potential as markers for periodontal disease progression or healthy restitution. Moreover, miRNA therapeutics hold great promise for the future of periodontal therapy because of their ability to modulate the immune response to infection when applied in conjunction with synthetic antagomirs and/or relatively straightforward delivery strategies.展开更多
Rose(Rosa hybrida)is widely used for cut flowers and as garden plants.Stable and efficient transformation system is required for functional genomics of rose.Here,we established an efficient transformation method for r...Rose(Rosa hybrida)is widely used for cut flowers and as garden plants.Stable and efficient transformation system is required for functional genomics of rose.Here,we established an efficient transformation method for rose using Agrobacterium tumefaciens-mediated transformation of embryogenic callus.Expanding rose leaves were used as explants to induce somatic embryos,which were subjected to transformation with A.tumefaciens strain GV3101 using Green Fluorescence Protein(GFP)as a marker gene.It took about 8 months to generate transgenic shoots from embryogenic callus.PCR,RT-PCR,Southern and Western blotting,as well as stereoscopic fluorescence microscopy analysis demonstrated that GFP transgenes integrated stably into the rose genome.According to our data,a transformation efficiency of up to 6%can be achieved by following this optimized protocol.展开更多
A series of Al‐containing mesostructured cellular silica foams(Al‐MCFs)with different Si/Al molar ratios(x;x=10,20,30,40,or50)were prepared by a post synthetic method using aluminum isopropoxide as an alumina source...A series of Al‐containing mesostructured cellular silica foams(Al‐MCFs)with different Si/Al molar ratios(x;x=10,20,30,40,or50)were prepared by a post synthetic method using aluminum isopropoxide as an alumina source.The corresponding NiMo catalysts supported on Al‐MCFs were prepared and evaluated using dibenzothiophene(DBT)as the probe reactant.All the synthesized samples were characterized by small‐angle X‐ray scattering,scanning electron microscopy,nitrogen adsorption‐desorption,UV‐Vis diffuse reflectance spectroscopy,H2temperature‐programmed reduction,27Al MAS NMR,temperature‐programmed desorption of ammonia,pyridine‐FTIR,Raman spectroscopy,HRTEM,and X‐ray photoelectron spectroscopy to analyze their physicochemical properties and to gain a deeper insight of the interrelationship between the structures and the catalytic performance.The synthesis mechanism was proposed to involve the formation of Br?nsted acid and Lewis acid sites through the replacement of Si4+with Al3+.Aluminum introduced into MCFs by the post synthetic method has a negligible influence on the mesostructure of the parent MCFs but can form silicoaluminate materials with moderate Br?nsted acidity.For Al‐MCFs(x)materials,the detection of tetrahedrally coordinated Al3+cations demonstrated that the Al species had been successfully incorporated into the silicon frameworks.Furthermore,the DBT hydrodesulfurization(HDS)catalytic activity of the NiMo/Al‐MCFs(x)catalysts increased with increasing Si/Al molar ratio,and reached a maximum at a Si/Al molar ratio of20.The interaction of Ni and Mo species with the support became stronger when Al was incorporated into the MCFs supports.The high activities of the NiMo/Al‐MCFs catalysts for the DBT HDS were attributed to the suitable acidity properties and good dispersions of the Ni and Mo active phases.展开更多
Two silica-supported cobalt catalysts were prepared by incipient wetness impregnation under atmospheric and vacuum conditions.N2 ph- ysisorption,H2 chemisorption,XRD,SEM,TEM,XPS and H2-TPR were used to characterize th...Two silica-supported cobalt catalysts were prepared by incipient wetness impregnation under atmospheric and vacuum conditions.N2 ph- ysisorption,H2 chemisorption,XRD,SEM,TEM,XPS and H2-TPR were used to characterize the catalysts.The results showed that the impregnation methods had an effect on the size,dispersion and reducibility of cobalt particles.Under vacuum conditions,cobalt-containing steeping liquor could penetrate into the inner pores of silica support and more bivalent cobalt oxides were formed in the Co3O4 crystallites.Furthermore,cobalt precursors were rarely inclined to agglomerate and the smaller cobalt particles were uniform on the support,which led to the higher activity of the Co/SiO2(B)catalyst than the normal one under the reaction conditions of 483- 523 K,1 - 2 MPa,gas hourly space velocity of 500–1000 h-1 and molar ratio of H2/CO=0.5 - 2.0.展开更多
In order to shorten the evaluation cycle of cobalt catalyst before the optimized catalyst is fixed on, a mathematical method is proposed to calculate weight percentage of C5+ hydrocarbons. Based on the carbide polyme...In order to shorten the evaluation cycle of cobalt catalyst before the optimized catalyst is fixed on, a mathematical method is proposed to calculate weight percentage of C5+ hydrocarbons. Based on the carbide polymerization mechanism and the main hydrocarbons being linear alkanes and α-olefins, the correlation between hydrocarbon distribution and the molecular mass ratio of water to hydrocarbons is discussed. The result shows the ratio was within the range of 1.125-1.286 and the lower the ratio, the more gaseous hydrocarbons were obtained. Moreover, a linear equation between the weight percentage of C5+ hydrocarbons and the weight ratio of C5+ hydrocarbons to the total water is established. These results are validated by corresponding experiments. The weight percentage of C5+ hydrocarbons could be immediately calculated by this linear equation without detailed gas chromatography (GC) analysis of them.展开更多
Inference for the difference of two independent normal means has been widely studied in staitstical literature. In this paper, we consider the case that the variances are unknown but with a known relationship between ...Inference for the difference of two independent normal means has been widely studied in staitstical literature. In this paper, we consider the case that the variances are unknown but with a known relationship between them. This situation arises frequently in practice, for example, when two instruments report averaged responses of the same object based on a different number of replicates, the ratio of the variances of the response is then known, and is the ratio of the number of replicates going into each response. A likelihood based method is proposed. Simulation results show that the proposed method is very accurate even when the sample sizes are small. Moreover, the proposed method can be extended to the case that the ratio of the variances is unknown.展开更多
The clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-related nuclease 9(Cas9)system enables precise,simple editing of genes in many animals and plants.However,this system has not been applied t...The clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-related nuclease 9(Cas9)system enables precise,simple editing of genes in many animals and plants.However,this system has not been applied to rose(Rosa hybrida)due to the genomic complexity and lack of an efficient transformation technology for this plant.Here,we established a platform for screening single-guide RNAs(sgRNAs)with high editing efficiency for CRISPR/Cas9-mediated gene editing in rose using suspension cells.We used the Arabidopsis thaliana U6-29 promoter,which showed high activity for driving sgRNA expression,to modify the CRISPR/Cas9 system.We used our highly efficient optimized CRISPR/Cas9 system to successfully edit RhEIN2,encoding an indispensable component of the ethylene signaling pathway,resulting in ethylene insensitivity in rose.Our optimized CRISPR/Cas9 system provides a powerful toolbox for functional genomics,molecular breeding,and synthetic biology in rose.展开更多
Acute ischemic stroke (AIS), as the third leading cause of death worldwide, is characterized by its high incidence, mortality rate, high incurred disability rate, and frequent reoccurrence. The neuroprotective effec...Acute ischemic stroke (AIS), as the third leading cause of death worldwide, is characterized by its high incidence, mortality rate, high incurred disability rate, and frequent reoccurrence. The neuroprotective effects of Ginkgo biloba extract (GBE) against several cerebral diseases have been reported in previous studies, but the underlying mechanisms of action are still unclear. Using a novel in vitro rat cortical capillary endothelial cell- astrocyte-neuron network model, we investigated the neuroprotective effects of GBE and one of its important constituents, Ginkgolide B (GB), against oxygenglucose deprivation/reoxygenation and glucose (OGD/R) injury. In this model, rat cortical capillary endothelial cells, astrocytes, and neurons were cocultured so that they could be synchronously observed in the same system. Pretreatment with GBE or GB increased the neuron cell viability, ameliorated cell injury, and inhibited the cell apoptotic rate through Bax and Bcl-2 expression regulation after OGD/R injury. Furthermore, GBE or GB pretreatment enhanced the transendothelial electrical resistance of capillary endothelial monolayers, reduced the endothelial permeability coefficients for sodium fluorescein (Na-F), and increased the expression levels of tight junction proteins, namely, ZO-1 and occludin, in endothelial cells. Results demonstrated the preventive effects of GBE on neuronal cell death and enhancement of the function of brain capillary endothelial monolayers after OGD/R injury in vitro; thus, GBE could be used as an effective neuroprotective agent for AIS/reperfusion, with GB as one of its significant constituents.展开更多
We present an explicit and recursive representation for high order moments of the first hitting times of single death processes.Based on that,some necessary or sufficient conditions of exponential ergodicity as well a...We present an explicit and recursive representation for high order moments of the first hitting times of single death processes.Based on that,some necessary or sufficient conditions of exponential ergodicity as well as a criterion on■-ergodicity are obtained for single death processes,respectively.展开更多
The ability to control cell patterning on artificial substrates with various physicochemical properties is of essence for important implications in cytology and biomedical fields. Despite extensive progress, the abili...The ability to control cell patterning on artificial substrates with various physicochemical properties is of essence for important implications in cytology and biomedical fields. Despite extensive progress, the ability to control the cell-surface interaction is complicated by the complexity in the physiochemical features of bioactive surfaces. In particular, the manifesta- tion of special wettability rendered by the combination of surface roughness and surface chemistry further enriches the cell-surface interaction. Herein we investigated the cell adhesion behaviors of Circulating Tumor Cells (CTCs) on topog- raphically patterned but chemically homogeneous surfaces. Harnessing the distinctive cell adhesion on surfaces with different topography, we further explored the feasibility of controlled cell patterning using periodic lattices of alternative topographies. We envision that our method provides a designer's toolbox to manage the extracellular environment.展开更多
The relationship between thermal conductivity and properties of mixing particles is required for quantitative study of heat transfer processes in asphalt-based materials. In this paper, we measured the e?ective ther-...The relationship between thermal conductivity and properties of mixing particles is required for quantitative study of heat transfer processes in asphalt-based materials. In this paper, we measured the e?ective ther- mal conductivity of asphalt-based materials with thermal conduction (graphite) and insulation (cenosphere) powders modification. By taking account of the particle shape, volume fraction, the thermal conductivity of filling particles and base asphalt, we present a new differential effective medium formula to predict the thermal conductivity modification in asphalt-based composite. Our theoretical predications are in good agreement with the experiment data. The new model can be applied for predicting the thermal properties of asphalt-based mixture, which is available for most of thermal modification in two-phase composites.展开更多
The past several years have witnessed the rapid development in effectively transforming randomly distributed water kinetic energy into electrical energy,especially triggered by the emergence of droplet‐based electric...The past several years have witnessed the rapid development in effectively transforming randomly distributed water kinetic energy into electrical energy,especially triggered by the emergence of droplet‐based electricity generators(DEG).Despite this,it still suffers from relatively low average power density,which is also achieved at the cost of long charging time,the time to reach stable and saturated surface charge density either through continuous droplet impingement or precharging.Although the harvested energy per droplet in DEG remains as the dominant metric,ultrahigh instantaneous output and short charging time are equally important in some specialized applications such as instantaneous luminescence.Here,we conduct systematical modeling and optimization to build the link between the hydrodynamic and electrical systems,which enables us to determine ultrahigh instantaneous output and short charging time by tailoring parameters such as dielectric layer thickness,droplet ion concentration,and external load.We envision that this strategy in achieving ultrahigh instantaneous output as well as shortening charging time would provide insights and design routes for water energy harvesting.展开更多
Wettability plays a vital role in fundamental researches and practical applications.Wettability control and patterning have been widely studied in various fields.Although researches have grown rapidly,the methods are ...Wettability plays a vital role in fundamental researches and practical applications.Wettability control and patterning have been widely studied in various fields.Although researches have grown rapidly,the methods are still restricted by limitations including complicated processes,high equipment requirements and shortage of methods to treat complex surfaces.Here we report a simple,low cost,array-based wettability control and patterning method via in-situ modification by flexible plasma stamp.Wettability control and patterning on surfaces of superhydrophobic aluminum,superhydrophobic PDMS and silicon,even plant leaf and fruit are achieved.The relationships between the wettability and the treatment time are investigated.We elucidate that the wetting states can also be reversible.The surface modification mechanism of in-situ plasma treatment is further investigated.Utilizing the step by step treatment,gradient and arbitrary wettability patterning on surfaces have been obtained.Notably,the patterned wettability on the inner surface of a tube has been realized,which has never been reported.Finally,in-situ wettability patterning is applied to achieve microfluidics channels on the inner surface of superhydrophobic tube.This work will bring new insights into the study of wetting field and stimulate more applications on wettability control and patterning.展开更多
基金the National Natural Science Foundation of China(Grant Nos.31972438,31902054,32202530)the Postdoctoral Initiation Project of Shenzhen Polytechnic(Grant Nos.6021330012K0,6020330006K0,and 6022312017K)+1 种基金Natural Science Foundation of Guangdong Province(Grant No.2021A1515110368)Major Agricultural Science and Technology Projects in Yunnan Province(Grant No.202102AE090052).
文摘Low temperature usually results in the developmental deformity of flower organs,immensely affecting the quality of rose flowers.However,it's largely unknown about the regulatory mechanisms activated by low temperature.Here,we used a low temperature-sensitive Rosa hybrida cv.‘Peach Avalanche’to screen a MADS-box gene RhAGL6 via conjoint analysis between RNA sequencing(RNA-seq)and whole-genome bisulfite sequencing(WGBS).Furthermore,we found that low temperature induced the hypermethylation and elevated histone 3 lys-27 trimethylation(H3K27me3)level on the RhAGL6 promoter,leading to decreased RhAGL6 expression.In addition,RhAGL6 silencing resulted in the formation of abnormal receptacles.We also found that the levels of gibberellins(GA3)and abscisic acid(ABA)in the receptacle under low temperature were lower and higher,respectively,than under normal temperature.Promoter activity analysis revealed that GA3 significantly activated RhAGL6 promoter activity,whereas ABA inhibited it.Thus,we propose that RhAGL6 regulates rose receptacle development by integrating epigenetic regulation and phytohormones signaling at low temperature.
基金National Natural Science Foundation of China,Grant/Award Number:32070542Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515010873 and 2022A1515011455+1 种基金Breed Industry Innovation Park of Guangdong Xiaoerhua Pig,Grant/Award Number:2022-4408X1-43010402-0019Hainan Provincial Natural Science Foundation,Grant/Award Number:818MS132。
文摘Background:Myocardial infarction(MI)is an acute condition in which the heart mus-cle dies due to the lack of blood supply.Previous research has suggested that au-tophagy and angiogenesis play vital roles in the prevention of heart failure after MI,and miR-106a is considered to be an important regulatory factor in MI.But the specific mechanism remains unknown.In this study,using cultured venous endothelial cells and a rat model of MI,we aimed to identify the potential target genes of miR-106a and discover the mechanisms of inhibiting autophagy and angiogenesis.Methods:We first explored the biological functions of miR-106a on autophagy and angiogenesis on endothelial cells.Then we identified ATG7,which was the down-stream target gene of miR-106a.The expression of miR-106a and ATG7 was investi-gated in the rat model of MI.Results:We found that miR-106a inhibits the proliferation,cell cycle,autophagy and angiogenesis,but promoted the apoptosis of vein endothelial cells.Moreover,ATG7 was identified as the target of miR-106a,and ATG7 rescued the inhibition of autophagy and angiogenesis by miR-106a.The expression of miR-106a in the rat model of MI was decreased but the expression of ATG7 was increased in the infarction areas.Conclusion:Our results indicate that miR-106a may inhibit autophagy and angiogenesis by targeting ATG7.This mechanism may be a potential therapeutic treatment for MI.
基金supported by the Guiding Science and Technology Planning Project of Daqing(Grant No.zd-2021-36)Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province,China(Grant No.LBH-Z21084)Natural Science Foundation of Heilongjiang Province(Grant No.LH 2022E019).
文摘The oil and gas potential of the Yan'an Formation in the Ordos Basin has yet to be fully tapped. In this study, the pore structure, mobile fluid saturation, and water flooding micro-mechanism of the Yan'an Formation sandstone are systematically studied through the application of a series of rock physics and fluid experiments. The results show that there is a good positive correlation between porosity and permeability, and the reservoirs are divided into types Ⅰ, Ⅱ, and Ⅲ. Mercury injection tests show that the average pore throat radius of the oil-bearing reservoir ranges from 1 to 7 μm. The displacement pressure of the Yan'an Formation is also relatively low, and it decreases from 0.1 MPa to 0.01 MPa as the rock porosity increases from 11% to 18%. NMR tests show that small (diameter <0.5 μm) and medium pores (diameter ranging from 0.5 to 2.5 μm) are predominant in the reservoir. Different types of reservoirs have different characteristics of relative permeability curve. In addition, when the average oil recovery rate is less than 1 ml/min, the oil displacement efficiency increases faster. However, when the average oil recovery rate is between 1–3.5 ml/min, the oil displacement efficiency is maintained at around 27%–30%. Physical properties of the reservoir, pore-throat structure, experimental pressure difference, and pore volume injected — all have significant effects on oil displacement efficiency. For Type Ⅰ and Type Ⅱ reservoirs, the increase of the pore volume injected has a significant effect on oil displacement efficiency. However, for Type Ⅲ reservoirs, the change of pore volume injected has insignificant effect on oil displacement efficiency. This study provides a reference for the formulation of estimated ultimate recovery (EUR) measures for similar sandstone reservoirs.
基金supported by the National Key Research and Development Program(Grant Nos.2018YFD1000400 and 2018YFD1000404)National Natural Science Foundation of China(Grant No.31872148)+1 种基金National Natural Science Foundation of China(Grant No.31902054)General Project of Shenzhen Science and Technology and Innovation Commission(Grant No.21K270360620)。
文摘Aquaporins(AQPs)are one of the most ancient superfamily proteins,which are essential for maintaining the fluid homeostasis of most organisms against various environments.Here,the latest findings for function of AQPs in cell signal transduction in plants are summarized.We also put forward several issues that still need to be addressed in the future.
基金supported by the National Natural Science Foundation of China(62203431)。
文摘The widespread usage of Cyber Physical Systems(CPSs)generates a vast volume of time series data,and precisely determining anomalies in the data is critical for practical production.Autoencoder is the mainstream method for time series anomaly detection,and the anomaly is judged by reconstruction error.However,due to the strong generalization ability of neural networks,some abnormal samples close to normal samples may be judged as normal,which fails to detect the abnormality.In addition,the dataset rarely provides sufficient anomaly labels.This research proposes an unsupervised anomaly detection approach based on adversarial memory autoencoders for multivariate time series to solve the above problem.Firstly,an encoder encodes the input data into low-dimensional space to acquire a feature vector.Then,a memory module is used to learn the feature vector’s prototype patterns and update the feature vectors.The updating process allows partial forgetting of information to prevent model overgeneralization.After that,two decoders reconstruct the input data.Finally,this research uses the Peak Over Threshold(POT)method to calculate the threshold to determine anomalous samples from normal samples.This research uses a two-stage adversarial training strategy during model training to enlarge the gap between the reconstruction error of normal and abnormal samples.The proposed method achieves significant anomaly detection results on synthetic and real datasets from power systems,water treatment plants,and computer clusters.The F1 score reached an average of 0.9196 on the five datasets,which is 0.0769 higher than the best baseline method.
文摘MicroRNAs(miRNAs) are critical regulators of the host immune and inflammatory response against bacterial pathogens. In the present review, we discuss target genes, target gene functions, the potential regulatory role of miRNAs in periodontal tissues, and the potential role of miRNAs as biomarkers and therapeutics. In periodontal disease, miRNAs exert control over all aspects of innate and adaptive immunity, including the functions of neutrophils, macrophages, dendritic cells and T and B cells. Previous human studies have highlighted some key miRNAs that are dysregulated in periodontitis patients. In the present study, we mapped the major miRNAs that were altered in our reproducible periodontitis mouse model relative to control animals. The miRNAs that were upregulated as a result of periodontal disease in both human and mouse studies included miR-15 a, miR-29 b, miR-125 a, miR-146 a,miR-148/148 a and miR-223, whereas miR-92 was downregulated. The association of individual miRNAs with unique aspects of periodontal disease and their stability in gingival crevicular fluid underscores their potential as markers for periodontal disease progression or healthy restitution. Moreover, miRNA therapeutics hold great promise for the future of periodontal therapy because of their ability to modulate the immune response to infection when applied in conjunction with synthetic antagomirs and/or relatively straightforward delivery strategies.
基金The authors thank Dr.Manzhu Bao(Huazhong Agricultural University,Wuhan,China),Dr.Hibrand-Saint Oyant L.(INRA,Agrocampus-Ouest,Universitéd’Angers,Beaucouzé,France)and Dr.Fabrice Foucher(INRA,78026 Versailles Cedex,France)for their excellent suggestions.We are also grateful to Dr.Wenxue Li and Dr.Hongqiu Wang(Chinese Academy of Agricultural Sci-ences,Beijing,China)for assistance with the experiments.This work was supported by grants from National Natural Science Foundation of China(Grant No.31522049)Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects(Grant No.CEFF-PXM2019_014207_000032).
文摘Rose(Rosa hybrida)is widely used for cut flowers and as garden plants.Stable and efficient transformation system is required for functional genomics of rose.Here,we established an efficient transformation method for rose using Agrobacterium tumefaciens-mediated transformation of embryogenic callus.Expanding rose leaves were used as explants to induce somatic embryos,which were subjected to transformation with A.tumefaciens strain GV3101 using Green Fluorescence Protein(GFP)as a marker gene.It took about 8 months to generate transgenic shoots from embryogenic callus.PCR,RT-PCR,Southern and Western blotting,as well as stereoscopic fluorescence microscopy analysis demonstrated that GFP transgenes integrated stably into the rose genome.According to our data,a transformation efficiency of up to 6%can be achieved by following this optimized protocol.
基金supported by National Natural Science Foundation of China (21276277,U1463207)CNOOC Project+1 种基金CNPC major projectthe Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (2015K003)~~
文摘A series of Al‐containing mesostructured cellular silica foams(Al‐MCFs)with different Si/Al molar ratios(x;x=10,20,30,40,or50)were prepared by a post synthetic method using aluminum isopropoxide as an alumina source.The corresponding NiMo catalysts supported on Al‐MCFs were prepared and evaluated using dibenzothiophene(DBT)as the probe reactant.All the synthesized samples were characterized by small‐angle X‐ray scattering,scanning electron microscopy,nitrogen adsorption‐desorption,UV‐Vis diffuse reflectance spectroscopy,H2temperature‐programmed reduction,27Al MAS NMR,temperature‐programmed desorption of ammonia,pyridine‐FTIR,Raman spectroscopy,HRTEM,and X‐ray photoelectron spectroscopy to analyze their physicochemical properties and to gain a deeper insight of the interrelationship between the structures and the catalytic performance.The synthesis mechanism was proposed to involve the formation of Br?nsted acid and Lewis acid sites through the replacement of Si4+with Al3+.Aluminum introduced into MCFs by the post synthetic method has a negligible influence on the mesostructure of the parent MCFs but can form silicoaluminate materials with moderate Br?nsted acidity.For Al‐MCFs(x)materials,the detection of tetrahedrally coordinated Al3+cations demonstrated that the Al species had been successfully incorporated into the silicon frameworks.Furthermore,the DBT hydrodesulfurization(HDS)catalytic activity of the NiMo/Al‐MCFs(x)catalysts increased with increasing Si/Al molar ratio,and reached a maximum at a Si/Al molar ratio of20.The interaction of Ni and Mo species with the support became stronger when Al was incorporated into the MCFs supports.The high activities of the NiMo/Al‐MCFs catalysts for the DBT HDS were attributed to the suitable acidity properties and good dispersions of the Ni and Mo active phases.
基金the financial support of Shanghai Research Institute of Petrochemical Technology,SINOPEC
文摘Two silica-supported cobalt catalysts were prepared by incipient wetness impregnation under atmospheric and vacuum conditions.N2 ph- ysisorption,H2 chemisorption,XRD,SEM,TEM,XPS and H2-TPR were used to characterize the catalysts.The results showed that the impregnation methods had an effect on the size,dispersion and reducibility of cobalt particles.Under vacuum conditions,cobalt-containing steeping liquor could penetrate into the inner pores of silica support and more bivalent cobalt oxides were formed in the Co3O4 crystallites.Furthermore,cobalt precursors were rarely inclined to agglomerate and the smaller cobalt particles were uniform on the support,which led to the higher activity of the Co/SiO2(B)catalyst than the normal one under the reaction conditions of 483- 523 K,1 - 2 MPa,gas hourly space velocity of 500–1000 h-1 and molar ratio of H2/CO=0.5 - 2.0.
基金supported by the Shanghai Research Institute of Petrochemical Technology,SINOPEC
文摘In order to shorten the evaluation cycle of cobalt catalyst before the optimized catalyst is fixed on, a mathematical method is proposed to calculate weight percentage of C5+ hydrocarbons. Based on the carbide polymerization mechanism and the main hydrocarbons being linear alkanes and α-olefins, the correlation between hydrocarbon distribution and the molecular mass ratio of water to hydrocarbons is discussed. The result shows the ratio was within the range of 1.125-1.286 and the lower the ratio, the more gaseous hydrocarbons were obtained. Moreover, a linear equation between the weight percentage of C5+ hydrocarbons and the weight ratio of C5+ hydrocarbons to the total water is established. These results are validated by corresponding experiments. The weight percentage of C5+ hydrocarbons could be immediately calculated by this linear equation without detailed gas chromatography (GC) analysis of them.
文摘Inference for the difference of two independent normal means has been widely studied in staitstical literature. In this paper, we consider the case that the variances are unknown but with a known relationship between them. This situation arises frequently in practice, for example, when two instruments report averaged responses of the same object based on a different number of replicates, the ratio of the variances of the response is then known, and is the ratio of the number of replicates going into each response. A likelihood based method is proposed. Simulation results show that the proposed method is very accurate even when the sample sizes are small. Moreover, the proposed method can be extended to the case that the ratio of the variances is unknown.
基金supported by the National Natural Science Foundation of China(31972438 and 32102427)the Natural Science Foundation of Shandong Province(ZR2021QC130)the Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects(CEFF-PXM2019_014207_000032)。
文摘The clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-related nuclease 9(Cas9)system enables precise,simple editing of genes in many animals and plants.However,this system has not been applied to rose(Rosa hybrida)due to the genomic complexity and lack of an efficient transformation technology for this plant.Here,we established a platform for screening single-guide RNAs(sgRNAs)with high editing efficiency for CRISPR/Cas9-mediated gene editing in rose using suspension cells.We used the Arabidopsis thaliana U6-29 promoter,which showed high activity for driving sgRNA expression,to modify the CRISPR/Cas9 system.We used our highly efficient optimized CRISPR/Cas9 system to successfully edit RhEIN2,encoding an indispensable component of the ethylene signaling pathway,resulting in ethylene insensitivity in rose.Our optimized CRISPR/Cas9 system provides a powerful toolbox for functional genomics,molecular breeding,and synthetic biology in rose.
文摘Acute ischemic stroke (AIS), as the third leading cause of death worldwide, is characterized by its high incidence, mortality rate, high incurred disability rate, and frequent reoccurrence. The neuroprotective effects of Ginkgo biloba extract (GBE) against several cerebral diseases have been reported in previous studies, but the underlying mechanisms of action are still unclear. Using a novel in vitro rat cortical capillary endothelial cell- astrocyte-neuron network model, we investigated the neuroprotective effects of GBE and one of its important constituents, Ginkgolide B (GB), against oxygenglucose deprivation/reoxygenation and glucose (OGD/R) injury. In this model, rat cortical capillary endothelial cells, astrocytes, and neurons were cocultured so that they could be synchronously observed in the same system. Pretreatment with GBE or GB increased the neuron cell viability, ameliorated cell injury, and inhibited the cell apoptotic rate through Bax and Bcl-2 expression regulation after OGD/R injury. Furthermore, GBE or GB pretreatment enhanced the transendothelial electrical resistance of capillary endothelial monolayers, reduced the endothelial permeability coefficients for sodium fluorescein (Na-F), and increased the expression levels of tight junction proteins, namely, ZO-1 and occludin, in endothelial cells. Results demonstrated the preventive effects of GBE on neuronal cell death and enhancement of the function of brain capillary endothelial monolayers after OGD/R injury in vitro; thus, GBE could be used as an effective neuroprotective agent for AIS/reperfusion, with GB as one of its significant constituents.
基金The authors thank the anonymous referees for their very valuable suggestions and careful reading of the draft,which greatly improved the quality of the paperThis work was supported by the National Natural Science Foundation of China(Grant Nos.11571043,11771047,11871008).
文摘We present an explicit and recursive representation for high order moments of the first hitting times of single death processes.Based on that,some necessary or sufficient conditions of exponential ergodicity as well as a criterion on■-ergodicity are obtained for single death processes,respectively.
基金This work was supported by Grant of Science and Technology on Microsystem Laboratory (9140C180105150C1809), the RGC Grant (11213414), the National Basic Research Program of China (2012CB933302), and National Natural Science Foundation of China (21390411).
文摘The ability to control cell patterning on artificial substrates with various physicochemical properties is of essence for important implications in cytology and biomedical fields. Despite extensive progress, the ability to control the cell-surface interaction is complicated by the complexity in the physiochemical features of bioactive surfaces. In particular, the manifesta- tion of special wettability rendered by the combination of surface roughness and surface chemistry further enriches the cell-surface interaction. Herein we investigated the cell adhesion behaviors of Circulating Tumor Cells (CTCs) on topog- raphically patterned but chemically homogeneous surfaces. Harnessing the distinctive cell adhesion on surfaces with different topography, we further explored the feasibility of controlled cell patterning using periodic lattices of alternative topographies. We envision that our method provides a designer's toolbox to manage the extracellular environment.
基金supported by the National Natural Science Foundation of China under grants Nos. 50906073 and 50973018
文摘The relationship between thermal conductivity and properties of mixing particles is required for quantitative study of heat transfer processes in asphalt-based materials. In this paper, we measured the e?ective ther- mal conductivity of asphalt-based materials with thermal conduction (graphite) and insulation (cenosphere) powders modification. By taking account of the particle shape, volume fraction, the thermal conductivity of filling particles and base asphalt, we present a new differential effective medium formula to predict the thermal conductivity modification in asphalt-based composite. Our theoretical predications are in good agreement with the experiment data. The new model can be applied for predicting the thermal properties of asphalt-based mixture, which is available for most of thermal modification in two-phase composites.
基金National Natural Science Foundation of China,Grant/Award Numbers:31771083,51975215Natural Science Foundation of Shanghai,Grant/Award Number:20ZR1418600。
文摘The past several years have witnessed the rapid development in effectively transforming randomly distributed water kinetic energy into electrical energy,especially triggered by the emergence of droplet‐based electricity generators(DEG).Despite this,it still suffers from relatively low average power density,which is also achieved at the cost of long charging time,the time to reach stable and saturated surface charge density either through continuous droplet impingement or precharging.Although the harvested energy per droplet in DEG remains as the dominant metric,ultrahigh instantaneous output and short charging time are equally important in some specialized applications such as instantaneous luminescence.Here,we conduct systematical modeling and optimization to build the link between the hydrodynamic and electrical systems,which enables us to determine ultrahigh instantaneous output and short charging time by tailoring parameters such as dielectric layer thickness,droplet ion concentration,and external load.We envision that this strategy in achieving ultrahigh instantaneous output as well as shortening charging time would provide insights and design routes for water energy harvesting.
基金This work was supported by the NSFC(Grant Nos.51975215,11504111,and 61574060)the Science and Technology Commission of Shanghai Municipality(Project No.19511120100)the financial support from the initial funding for scientific research of East China Normal University.
文摘Wettability plays a vital role in fundamental researches and practical applications.Wettability control and patterning have been widely studied in various fields.Although researches have grown rapidly,the methods are still restricted by limitations including complicated processes,high equipment requirements and shortage of methods to treat complex surfaces.Here we report a simple,low cost,array-based wettability control and patterning method via in-situ modification by flexible plasma stamp.Wettability control and patterning on surfaces of superhydrophobic aluminum,superhydrophobic PDMS and silicon,even plant leaf and fruit are achieved.The relationships between the wettability and the treatment time are investigated.We elucidate that the wetting states can also be reversible.The surface modification mechanism of in-situ plasma treatment is further investigated.Utilizing the step by step treatment,gradient and arbitrary wettability patterning on surfaces have been obtained.Notably,the patterned wettability on the inner surface of a tube has been realized,which has never been reported.Finally,in-situ wettability patterning is applied to achieve microfluidics channels on the inner surface of superhydrophobic tube.This work will bring new insights into the study of wetting field and stimulate more applications on wettability control and patterning.