To understand the CH_(4) flux variations and their climatic drivers in the rice-wheat agroecosystem in the Huai River Basin of China,the CH_(4) flux was observed by using open-path eddy covariance at a typical rice-wh...To understand the CH_(4) flux variations and their climatic drivers in the rice-wheat agroecosystem in the Huai River Basin of China,the CH_(4) flux was observed by using open-path eddy covariance at a typical rice-wheat rotation system in Anhui Province,China from November 2019 to October 2021.The variations and their drivers were then analyzed with the Akaike information criterion method.CH_(4) flux showed distinct diurnal variations with single peaks during 9:00-13:00 local time.The highest peak was 2.15μg m^(-2)s^(-1)which occurred at 11:00 in the vegetative growth stage in the rice growing season(RGS).CH_(4) flux also showed significant seasonal variations.The average CH_(4)flux in the vegetative growth stage in the RGS(193.8±74.2 mg m^(-2)d^(-1))was the highest among all growth stages.The annual total CH_(4) flux in the non-rice growing season(3.2 g m^(-2))was relatively small compared to that in the RGS(23.9 g m^(-2)).CH_(4) flux increased significantly with increase in air temperature,soil temperature,and soil water content in both the RGS and the non-RGS,while it decreased significantly with increase in vapor pressure deficit in the RGS.This study provided a comprehensive understanding of the CH_(4) flux and its drivers in the rice-wheat rotation agroecosystem in the Huai River Basin of China.In addition,our findings will be helpful for the validation and adjustment of the CH_(4) models in this region.展开更多
Background A virtual system that simulates the complete process of orthodontic bracket placement can be used for pre-clinical skill training to help students gain confidence by performing the required tasks on a virtu...Background A virtual system that simulates the complete process of orthodontic bracket placement can be used for pre-clinical skill training to help students gain confidence by performing the required tasks on a virtual patient.Methods The hardware for the virtual simulation system is built using two force feedback devices to support bi-manual force feedback operation.A 3D mouse is used to adjust the position of the virtual patient.A multi-threaded computational methodology is adopted to satisfy the requirements of the frame rate.The computation threads mainly consist of the haptic thread running at a frequency of>1000Hz and the graphic thread at>30Hz.The graphic thread allows the graphics engine to effectively display the visual effects of biofilm removal and acid erosion through texture mapping.Using the haptic thread,the physics engine adopts the hierarchy octree collision-detection algorithm to simulate the multi-point and multi-region interaction between the tools and the virtual environment.Its high efficiency guarantees that the time cost can be controlled within 1 ms.The physics engine also performs collision detection between the tools and particles,making it possible to simulate paint and removal of colloids.The surface-contact constraints are defined in the system;this ensures that the bracket will not divorce from or embed into the tooth during the adjustment of the bracket.Therefore,the simulated adjustment is more realistic and natural.Results A virtual system to simulate the complete process of orthodontic bracket bonding was developed.In addition to bracket bonding and adjustment,the system simulates the necessary auxiliary steps such as smearing,acid etching,and washing.Furthermore,the system supports personalized case training.Conclusions The system provides a new method for students to practice orthodontic skills.展开更多
Population density functions have long been used to describe the spatial structure of regional population distributions.Several studies have been conducted to examine the population distribution in Shandong Province,C...Population density functions have long been used to describe the spatial structure of regional population distributions.Several studies have been conducted to examine the population distribution in Shandong Province,China,but few have applied regional density functions to the analysis.Therefore,based on the 2000,2010,and 2020 population censuses,this study used monocentric and polycentric regional density functions to study the characteristics of population agglomeration and diffusion in Shandong.This is followed by an in-depth discussion based on population growth rate data and hot-and cold-spot analyses.The results showed that the Shandong Province population was spatially unevenly distributed.Population growth rates were higher in urban centers and counties,with more significant changes in population size in the eastern coastal areas than in the inland areas.As verified in this study,the logarithmic form of the single-center regional density function R2 was greater than 0.8,which was in line with the population spatial structure of Shandong Province.During the study period,the estimated population density of the regional center and the absolute value of the regional population density gradient both increased,indicating a clear and increasing trend of centripetal agglomeration of regional centers over the study period.Overall,the R2 value of the multicenter region density function was higher than that of the single-center region density function.The polycentric regional density function showed that the population density gradient of some centers had a downward trend,which reflected the spatial development trend of outward diffusion in these centers.Meanwhile,the variation in the estimated population density and the population density gradient exhibited differences in the central population distribution patterns at different levels.展开更多
In recent times,there has been an increasing demand for energy which has resulted in an increased consumption of fossil fuels thereby posing a number of challenges to the environment.In the course finding possible sol...In recent times,there has been an increasing demand for energy which has resulted in an increased consumption of fossil fuels thereby posing a number of challenges to the environment.In the course finding possible solutions to this environmental canker,solar photocatalytic water splitting to produce hydrogen gas has been identified as one of the most promising methods for generating renewable energy.To retard the recombination of photogenerated carriers and improve the efficiency of photocatalysis,the present paper reports a facile method called the hydrothermal method,which wa s used to prepare ternary graphene-like photocatalyst.A“Design Expert”was used to investigate the influence of the loading weight of Mo and GO as well as the temperature of hydrothermal reaction and their interactions on the evolution of hydrogen(H 2)in 4 h.The experimental results showed that the ternary graphene-like photocatalyst has a strong photocatalytic hydrogen production activity compared to that of pure SiC.In particular,the catalyst added 2.5 wt%of GO weight yielded the highest quantum of 21.69%at 400-700 nm of wavelength.The optimal evolution H2 in 4 h conditions was obtained as follows:The loading weight of Mo was 8.19 wt%,the loading weight of GO was 2.02 wt%,the temperature of the hydrothermal reaction was 200.93℃.Under the optimum conditions,the evolution of H2 in 4h could reach 4.2030 mL.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20220017)the Innovation Development Project of China Meteorological Administration(CXFZ2023J073)+1 种基金the Key Research and Development Program of Anhui Province,China(2022M07020003)the Graduate Student Practice and Innovation Program of Jiangsu Province,China(SJCX22_0374)。
文摘To understand the CH_(4) flux variations and their climatic drivers in the rice-wheat agroecosystem in the Huai River Basin of China,the CH_(4) flux was observed by using open-path eddy covariance at a typical rice-wheat rotation system in Anhui Province,China from November 2019 to October 2021.The variations and their drivers were then analyzed with the Akaike information criterion method.CH_(4) flux showed distinct diurnal variations with single peaks during 9:00-13:00 local time.The highest peak was 2.15μg m^(-2)s^(-1)which occurred at 11:00 in the vegetative growth stage in the rice growing season(RGS).CH_(4) flux also showed significant seasonal variations.The average CH_(4)flux in the vegetative growth stage in the RGS(193.8±74.2 mg m^(-2)d^(-1))was the highest among all growth stages.The annual total CH_(4) flux in the non-rice growing season(3.2 g m^(-2))was relatively small compared to that in the RGS(23.9 g m^(-2)).CH_(4) flux increased significantly with increase in air temperature,soil temperature,and soil water content in both the RGS and the non-RGS,while it decreased significantly with increase in vapor pressure deficit in the RGS.This study provided a comprehensive understanding of the CH_(4) flux and its drivers in the rice-wheat rotation agroecosystem in the Huai River Basin of China.In addition,our findings will be helpful for the validation and adjustment of the CH_(4) models in this region.
文摘Background A virtual system that simulates the complete process of orthodontic bracket placement can be used for pre-clinical skill training to help students gain confidence by performing the required tasks on a virtual patient.Methods The hardware for the virtual simulation system is built using two force feedback devices to support bi-manual force feedback operation.A 3D mouse is used to adjust the position of the virtual patient.A multi-threaded computational methodology is adopted to satisfy the requirements of the frame rate.The computation threads mainly consist of the haptic thread running at a frequency of>1000Hz and the graphic thread at>30Hz.The graphic thread allows the graphics engine to effectively display the visual effects of biofilm removal and acid erosion through texture mapping.Using the haptic thread,the physics engine adopts the hierarchy octree collision-detection algorithm to simulate the multi-point and multi-region interaction between the tools and the virtual environment.Its high efficiency guarantees that the time cost can be controlled within 1 ms.The physics engine also performs collision detection between the tools and particles,making it possible to simulate paint and removal of colloids.The surface-contact constraints are defined in the system;this ensures that the bracket will not divorce from or embed into the tooth during the adjustment of the bracket.Therefore,the simulated adjustment is more realistic and natural.Results A virtual system to simulate the complete process of orthodontic bracket bonding was developed.In addition to bracket bonding and adjustment,the system simulates the necessary auxiliary steps such as smearing,acid etching,and washing.Furthermore,the system supports personalized case training.Conclusions The system provides a new method for students to practice orthodontic skills.
基金This research was funded by the Shandong Provincial Natural Science Foundation(grant number ZR202102240088).
文摘Population density functions have long been used to describe the spatial structure of regional population distributions.Several studies have been conducted to examine the population distribution in Shandong Province,China,but few have applied regional density functions to the analysis.Therefore,based on the 2000,2010,and 2020 population censuses,this study used monocentric and polycentric regional density functions to study the characteristics of population agglomeration and diffusion in Shandong.This is followed by an in-depth discussion based on population growth rate data and hot-and cold-spot analyses.The results showed that the Shandong Province population was spatially unevenly distributed.Population growth rates were higher in urban centers and counties,with more significant changes in population size in the eastern coastal areas than in the inland areas.As verified in this study,the logarithmic form of the single-center regional density function R2 was greater than 0.8,which was in line with the population spatial structure of Shandong Province.During the study period,the estimated population density of the regional center and the absolute value of the regional population density gradient both increased,indicating a clear and increasing trend of centripetal agglomeration of regional centers over the study period.Overall,the R2 value of the multicenter region density function was higher than that of the single-center region density function.The polycentric regional density function showed that the population density gradient of some centers had a downward trend,which reflected the spatial development trend of outward diffusion in these centers.Meanwhile,the variation in the estimated population density and the population density gradient exhibited differences in the central population distribution patterns at different levels.
基金The financial was supported by the National Natural Science Foundation of China(Grant No.51674161)Innovation Team Project of Shandong University of Science and Technology(No.2012KYTD102)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20133718110005)Shandong Provincial Education Association for International Exchanges is gratefully acknowledged.
文摘In recent times,there has been an increasing demand for energy which has resulted in an increased consumption of fossil fuels thereby posing a number of challenges to the environment.In the course finding possible solutions to this environmental canker,solar photocatalytic water splitting to produce hydrogen gas has been identified as one of the most promising methods for generating renewable energy.To retard the recombination of photogenerated carriers and improve the efficiency of photocatalysis,the present paper reports a facile method called the hydrothermal method,which wa s used to prepare ternary graphene-like photocatalyst.A“Design Expert”was used to investigate the influence of the loading weight of Mo and GO as well as the temperature of hydrothermal reaction and their interactions on the evolution of hydrogen(H 2)in 4 h.The experimental results showed that the ternary graphene-like photocatalyst has a strong photocatalytic hydrogen production activity compared to that of pure SiC.In particular,the catalyst added 2.5 wt%of GO weight yielded the highest quantum of 21.69%at 400-700 nm of wavelength.The optimal evolution H2 in 4 h conditions was obtained as follows:The loading weight of Mo was 8.19 wt%,the loading weight of GO was 2.02 wt%,the temperature of the hydrothermal reaction was 200.93℃.Under the optimum conditions,the evolution of H2 in 4h could reach 4.2030 mL.