Facing the computing demands of Internet of things(IoT)and artificial intelligence(AI),the cost induced by moving the data between the central processing unit(CPU)and memory is the key problem and a chip featured with...Facing the computing demands of Internet of things(IoT)and artificial intelligence(AI),the cost induced by moving the data between the central processing unit(CPU)and memory is the key problem and a chip featured with flexible structural unit,ultra-low power consumption,and huge parallelism will be needed.In-memory computing,a non-von Neumann architecture fusing memory units and computing units,can eliminate the data transfer time and energy consumption while performing massive parallel computations.Prototype in-memory computing schemes modified from different memory technologies have shown orders of magnitude improvement in computing efficiency,making it be regarded as the ultimate computing paradigm.Here we review the state-of-the-art memory device technologies potential for in-memory computing,summarize their versatile applications in neural network,stochastic generation,and hybrid precision digital computing,with promising solutions for unprecedented computing tasks,and also discuss the challenges of stability and integration for general in-memory computing.展开更多
The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However...The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However,the further extension of the refresh time in quasi-nonvolatile memory is limited by the charge leakage through the p-n junction.Here,based on the density of states engineered van der Waals heterostructures,the leakage of electrons from the floating gate to the channel is greatly suppressed.As a result,the refresh time is effectively extended to more than 100 s,which is the longest among all previously reported quasi-nonvolatile memories.This work provides a new idea to enhance the refresh time of quasi-nonvolatile memory by the density of states engineering and demonstrates great application potential for high-speed and low-power memory technology.展开更多
The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However...The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However,the further extension of the refresh time in quasi-nonvolatile memory is limited by the charge leakage through the p-n junction.Here,based on the density of states engineered van der Waals heterostructures,the leakage of electrons from the floating gate to the channel is greatly suppressed.As a result,the refresh time is effectively extended to more than 100 s,which is the longest among all previously reported quasi-nonvolatile memories.This work provides a new idea to enhance the refresh time of quasi-nonvolatile memory by the density of states engineering and demonstrates great application potential for high-speed and low-power memory technology.展开更多
The“College English Curriculum Requirements”promulgated by the Ministry of Education of China has detailed regulations on the five aspects of English listening,speaking,reading,writing,and translating for ordinary u...The“College English Curriculum Requirements”promulgated by the Ministry of Education of China has detailed regulations on the five aspects of English listening,speaking,reading,writing,and translating for ordinary undergraduates.However,the foreign language translation ability of most college students in China is still the weak link in the English ability structure.With the further opening up of all walks of life in China,the role of English in daily life and work is becoming more and more important.This paper analyzes and summarizes the current situation and problems of college English translation teaching in China,and proposes corresponding improvement measures.展开更多
Flash memory with high operation speed and stable retention performance is in great demand to meet the requirements of big data.In addition,the realisation of ultrafast flash memory with novel functions offers a means...Flash memory with high operation speed and stable retention performance is in great demand to meet the requirements of big data.In addition,the realisation of ultrafast flash memory with novel functions offers a means of combining heterogeneous components into a homogeneous device without considering impedance matching.This report proposes a 20 ns programme flash memory with 10^(8) self-rectifying ratios based on a 0.65 nm-thick MoS_(2)-channel transistor.A high-quality van der Waals heterojunction with a sharp interface is formed between the Cr/Au metal floating layer and h-BN tunnelling layer.In addition,the large rectification ratio and low ideality factor(n=1.13)facilitate the application of the MoS_(2)-channel flash memory as a bit-line select transistor.Finally,owing to the ultralow MoS_(2)/h-BN heterojunction capacitance(50 fF),the memory device exhibits superior performance as a high-frequency(up to 1 MHz)sine signal rectifier.These results pave the way toward the potential utilisation of multifunctional memory devices in ultrafast two-dimensional NAND-flash applications.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61925402 and 61851402)Science and Technology Commission of Shanghai Municipality,China(Grant No.19JC1416600)+1 种基金the National Key Research and Development Program of China(Grant No.2017YFB0405600)Shanghai Education Development Foundation and Shanghai Municipal Education Commission Shuguang Program,China(Grant No.18SG01).
文摘Facing the computing demands of Internet of things(IoT)and artificial intelligence(AI),the cost induced by moving the data between the central processing unit(CPU)and memory is the key problem and a chip featured with flexible structural unit,ultra-low power consumption,and huge parallelism will be needed.In-memory computing,a non-von Neumann architecture fusing memory units and computing units,can eliminate the data transfer time and energy consumption while performing massive parallel computations.Prototype in-memory computing schemes modified from different memory technologies have shown orders of magnitude improvement in computing efficiency,making it be regarded as the ultimate computing paradigm.Here we review the state-of-the-art memory device technologies potential for in-memory computing,summarize their versatile applications in neural network,stochastic generation,and hybrid precision digital computing,with promising solutions for unprecedented computing tasks,and also discuss the challenges of stability and integration for general in-memory computing.
基金This work was supported by the National Natural Science Foundation of China(61925402,61851402 and 61734003)Science and Technology Commission of Shanghai Municipality(19JC1416600)+2 种基金National Key Research and Development Program(2017YFB0405600)Shanghai Education Development Foundation and Shanghai Municipal Education Commission Shuguang Program(18SG01)China Postdoctoral Science Foundation(2019M661358,2019TQ0065).
文摘The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However,the further extension of the refresh time in quasi-nonvolatile memory is limited by the charge leakage through the p-n junction.Here,based on the density of states engineered van der Waals heterostructures,the leakage of electrons from the floating gate to the channel is greatly suppressed.As a result,the refresh time is effectively extended to more than 100 s,which is the longest among all previously reported quasi-nonvolatile memories.This work provides a new idea to enhance the refresh time of quasi-nonvolatile memory by the density of states engineering and demonstrates great application potential for high-speed and low-power memory technology.
文摘The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However,the further extension of the refresh time in quasi-nonvolatile memory is limited by the charge leakage through the p-n junction.Here,based on the density of states engineered van der Waals heterostructures,the leakage of electrons from the floating gate to the channel is greatly suppressed.As a result,the refresh time is effectively extended to more than 100 s,which is the longest among all previously reported quasi-nonvolatile memories.This work provides a new idea to enhance the refresh time of quasi-nonvolatile memory by the density of states engineering and demonstrates great application potential for high-speed and low-power memory technology.
基金Research on the Translation,Introduction and Spread of Gansu Tibetan Intangible Cultural Heritages(Project Number:20YB107).
文摘The“College English Curriculum Requirements”promulgated by the Ministry of Education of China has detailed regulations on the five aspects of English listening,speaking,reading,writing,and translating for ordinary undergraduates.However,the foreign language translation ability of most college students in China is still the weak link in the English ability structure.With the further opening up of all walks of life in China,the role of English in daily life and work is becoming more and more important.This paper analyzes and summarizes the current situation and problems of college English translation teaching in China,and proposes corresponding improvement measures.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.62004042,61925402,61851402,and 61734003).The authors would like to acknowledge the support by the Young Scientist project of the MoE innovation platform.The authors would also like to acknowledge Professor Ning Sheng Xu for the valuable advice on thesis writing.
文摘Flash memory with high operation speed and stable retention performance is in great demand to meet the requirements of big data.In addition,the realisation of ultrafast flash memory with novel functions offers a means of combining heterogeneous components into a homogeneous device without considering impedance matching.This report proposes a 20 ns programme flash memory with 10^(8) self-rectifying ratios based on a 0.65 nm-thick MoS_(2)-channel transistor.A high-quality van der Waals heterojunction with a sharp interface is formed between the Cr/Au metal floating layer and h-BN tunnelling layer.In addition,the large rectification ratio and low ideality factor(n=1.13)facilitate the application of the MoS_(2)-channel flash memory as a bit-line select transistor.Finally,owing to the ultralow MoS_(2)/h-BN heterojunction capacitance(50 fF),the memory device exhibits superior performance as a high-frequency(up to 1 MHz)sine signal rectifier.These results pave the way toward the potential utilisation of multifunctional memory devices in ultrafast two-dimensional NAND-flash applications.