Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Imp...Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology.Recently,a new type of posttranslational modification,known as lysine succinylation,has been recognized to play a significant role in mitochondrial energy metabolism after ischemia.However,the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood.We aimed to review the effects of succinylation on energy metabolism,reactive oxygen species generation,and neuroinflammation,as well as Sirtuin 5 mediated desuccinylation after stroke.We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke.The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases.Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes.Sirtuins,especially Sirtuin 5,are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes.Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke.Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism,and neuroprotective effects of these agents have been observed in experimental stroke studies.However,their therapeutic efficacy in stroke patients should be validated.展开更多
This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a mul...This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm.展开更多
The Paris Agreement proposed to keep the increase in global average temperature to well below 2 ℃ abovepre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 ℃ above pre-industriallevel...The Paris Agreement proposed to keep the increase in global average temperature to well below 2 ℃ abovepre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 ℃ above pre-industriallevels. It was thus the first international treaty to endow the 2 ℃ global temperature target with legal effect.The qualitative expression of the ultimate objective in Article 2 of the United Nations Framework Conventionon Climate Change (UNFCCC) has now evolved into the numerical temperature rise target in Article 2 of theParis Agreement. Starting with the Second Assessment Report (SAR) of the Intergovernmental Panel on Cli-mate Change (IPCC), an important task for subsequent assessments has been to provide scientific informa-tion to help determine the quantified long-term goal for UNFCCC negotiation. However, due to involvementin the value judgment within the scope of non-scientific assessment, the IPCC has never scientifically af-firmed the unacceptable extent of global temperature rise. The setting of the long-term goal for addressingclimate change has been a long process, and the 2 ℃ global temperature target is the political consensuson the basis of scientific assessment. This article analyzes the evolution of the long-term global goal foraddressing climate change and its impact on scientific assessment, negotiation processes, and global low-carbon development, from aspects of the origin of the target, the series of assessments carried out by the 1PCCfocusing on Article 2 of the UNFCCC, and the promotion of the global temperature goal at the political level.展开更多
Although it was proposedmany years ago that compressed hydrogen should be a high-temperature superconductor,the goal of room-temperature superconductivity has so far remained out of reach.However,the successful synthe...Although it was proposedmany years ago that compressed hydrogen should be a high-temperature superconductor,the goal of room-temperature superconductivity has so far remained out of reach.However,the successful synthesis of the theoretically predicted hydrides H3S and LaH10 with high superconducting transition temperatures TC provides clear guidance for achieving this goal.The existence of these superconducting hydrides also confirms the utility of theoretical predictions in finding high-TC superconductors.To date,numerous hydrideshave been studied theoretically or experimentally,especially binary hydrides.Interestingly,some of them exhibit superconductivity above 200 K.To gain insight into these high-TC hydrides(>200 K)and facilitate further research,we summarize their crystal structures,bonding features,and electronic properties,as well as their superconductingmechanism.Based on hydrogen structuralmotifs,covalentH3Swith isolated hydrogen and several clathrate superhydrides(LaH10,YH9,and CaH6)are highlighted.Other predicted hydrides with various H-cages and two-dimensional H motifs are also discussed.Finally,we present a systematic discussion of the common features,current problems,and future challenges of these high-TC hydrides.展开更多
In order to find the effect of different viscosity modifier dosages on asphalt binder's performance in bus rapid transit lanes in the city of Chengdu, three different viscosity modifiers were analyzed: TAFPACK-super...In order to find the effect of different viscosity modifier dosages on asphalt binder's performance in bus rapid transit lanes in the city of Chengdu, three different viscosity modifiers were analyzed: TAFPACK-super (TPS), high-viscosity additive (HVA) and road-science- technology (RST), and four different asphalt binders were investigated through laboratory experiments. The percent- ages of the viscosity modifiers used were: TPS (0%, 8%, 10%, 12%, 14% and 16%) and RST and HVA (8% and 12%) depending on the type of asphalt binder. Technical indicators of modifier asphalt were tested through con- ventional and unconventional binder tests. It has been found out that only a percentage greater than or equal to 14% TPS is reasonable to achieve the requirement set by 20,000 Pa. s for the 60℃ dynamic viscosity on local #70 grade asphalt. The results indicate that conventional bin- ders did not meet the requirements of the 60℃ dynamic viscosity when 12% of TPS or HVA modifiers were used. In addition, the B-type styrene-butadienne-styrene (SBS) modified asphalt binder has better viscosity balance than the A-type SBS modified when 8% of each of the three different kinds of viscosity modifiers is used. Therefore, the B-type modified SBS thus appears to be a suitable choice in asphalt mixtures for bus rapid transit lane with the 60℃ dynamic viscosity.展开更多
Objective:Adjuvant docetaxel-based chemotherapy is frequently used for operable early breast cancer(EBC).This study investigated patterns of use of docetaxel(T)in real-life clinical practice in China.Methods:Thi...Objective:Adjuvant docetaxel-based chemotherapy is frequently used for operable early breast cancer(EBC).This study investigated patterns of use of docetaxel(T)in real-life clinical practice in China.Methods:This was a retrospective pooled analysis of the Asia-Pacific Breast Initiatives(APBI)Ⅰ(2006–2008)and Ⅱ(2009–2011)registries,and two Chinese observational studies;BC STATE(2011–2014)and BC Local Registry(2007–2010).Female Chinese adults(≥18 years)with operable breast cancer treated with docetaxel-based adjuvant chemotherapy were included in the analysis.Patients with metastatic disease were excluded.The primary endpoint was assessment of treatment patterns and patient profiles.A logistic regression analysis was conducted to identify factors associated with choice of adjuvant chemotherapy regimen.Results:Data from 3,020 patients were included.The most frequently used adjuvant regimen was docetaxel/anthracycline combination[n=1,421(47.1%);of whom 52.0%received T/epirubicin(E)/cyclophosphamide(C)],followed by docetaxel/other[n=705(23.3%);of whom 72.8%received TC],docetaxel/anthracycline sequential[n=447(14.8%);of whom 40.9%and 39.6%received 5-Fu/EC-T and EC-T,respectively],and"other"[n=447(14.8%);of whom 91.5%received T].A significant association was found between adjuvant therapy with docetaxel/anthracycline combination and patient weight,menopausal status and estrogen receptor status.Conclusions:Real-world data revealed that docetaxel/anthracycline combination is the most commonly used category of docetaxel-based adjuvant therapy for patients with operable breast cancer in China;of which TEC is the most frequently used regimen.展开更多
Removing rain from a single image is a challenging task due to the absence of temporal information. Considering that a rainy image can be decomposed into the low-frequency(LF) and high-frequency(HF) components, where ...Removing rain from a single image is a challenging task due to the absence of temporal information. Considering that a rainy image can be decomposed into the low-frequency(LF) and high-frequency(HF) components, where the coarse scale information is retained in the LF component and the rain streaks and texture correspond to the HF component, we propose a single image rain removal algorithm using image decomposition and a dense network. We design two task-driven sub-networks to estimate the LF and non-rain HF components of a rainy image. The high-frequency estimation sub-network employs a densely connected network structure, while the low-frequency sub-network uses a simple convolutional neural network(CNN).We add total variation(TV) regularization and LF-channel fidelity terms to the loss function to optimize the two subnetworks jointly. The method then obtains de-rained output by combining the estimated LF and non-rain HF components.Extensive experiments on synthetic and real-world rainy images demonstrate that our method removes rain streaks while preserving non-rain details, and achieves superior de-raining performance both perceptually and quantitatively.展开更多
Based on piezoelectric ultrasound technology,the paper theoretically analyses the determination of gas concentration and presents a norm-contrast method,which is realized by high-speed chip CPLD (Complex programmable ...Based on piezoelectric ultrasound technology,the paper theoretically analyses the determination of gas concentration and presents a norm-contrast method,which is realized by high-speed chip CPLD (Complex programmable logic device),to determine the concentration of SF_6 accurately with air as background.It is proved that this sensor can determine the concentration of SF_6 with the precision of 50μg/g.The sensor is in the process of producing.展开更多
Superionic and electride behaviors in materials,which induce a variety of exotic physical properties of ions and electrons,are of great importance both in fundamental research and for practical applications.However,th...Superionic and electride behaviors in materials,which induce a variety of exotic physical properties of ions and electrons,are of great importance both in fundamental research and for practical applications.However,their coexistence in hot alkali-metal borides has not been observed.In this work,we apply first-principles structure search calculations to identify eight Na-B compounds with host-guest structures,which exhibit a wide range of building blocks and interesting properties linked to the Na/B composition.Among the known borides,Na-rich Na9B stands out as the composition with the highest alkali-metal content,featuring vertex-and face-sharing BNa16 polyhedra.Notably,it exhibits electride characteristics and transforms into a superionic electride at 200 GPa and 2000 K,displaying unusual Na atomic diffusion behavior attributed to the modulation of the interstitial anion electrons.It demonstrates semiconductor behavior in the solid state,and metallic properties associated with Na 3p/3s states in the superionic and liquid regions.On the other hand,B-rich NaB7,consisting of a unique covalent B framework,is predicted to exhibit low-frequency phonon-mediated superconductivity with a T_(c) of 16.8 K at 55 GPa.Our work advances the understanding of the structures and properties of alkali-metal borides.展开更多
A carbonization method is reported to improve the thermal conductivity of carbon nanotube (CNT) arrays. After being impregnated with phenolic resins, CNT arrays were carbonized at a temperature up to 1400°C. As a...A carbonization method is reported to improve the thermal conductivity of carbon nanotube (CNT) arrays. After being impregnated with phenolic resins, CNT arrays were carbonized at a temperature up to 1400°C. As a result, pyrolytic carbon was formed and connected non-neighboring CNTs. The pyrolysis improved the room temperature conductivity from below 2 W/m·K up to 11.8 and 14.6 W/m·K with carbonization at 800°C and 1400°C, respectively. Besides the light mass density of 1.1 g/cm3, the C/C composites demonstrated high thermal stability and a higher conductivity up to 21.4 W/m·K when working at 500°C.展开更多
The covalent frameworks found in certain compounds,such as the S–H skeleton in H3S and the H cage in LaH10,play an essential role in their superconductivity.These compounds have the feature of bonding unsaturation(a ...The covalent frameworks found in certain compounds,such as the S–H skeleton in H3S and the H cage in LaH10,play an essential role in their superconductivity.These compounds have the feature of bonding unsaturation(a deficiency of electrons in their covalent bonding)in common.Developing an understanding of the relationship between superconductivity and bonding unsaturation in these materials can provide new ideas for the design of superconducting materials.In this work,we explored the high-pressure phase diagram of binary P–S compounds using first-principles swarm structural calculations.In addition to the previously reported P2S and P3S structures,we identified that P5S,P8S,and P11S also have a common structural character of six-coordinated octahedral networks;however,their bonding unsaturation are distinct due to the different valence electron numbers and unequal ratios of P and S atoms.These features provide an ideal model for exploring the bonding-unsaturation dependence of superconductivity.We estimated the average bonding unsaturation of these P-rich compounds based on the valence electron numbers and the coordination numbers of the central P/S atoms.Interestingly,the resultant average bonding unsaturation was found to be proportional to the predicted superconducting transition temperature.This finding was also verified in MH9(M=Y,Th,and Pr)and doped H3S(Si,C,and P)compounds.Our work provides an opportunity to gain a deeper understanding of bonding-unsaturation-dependent superconductivity.展开更多
Measurement and comparison of NaNO3 powder concealed in opaque and semi-transparent plastic bottles are carried out through conventional Raman spectroscopy and spatially offset Raman spectroscopy individually. The act...Measurement and comparison of NaNO3 powder concealed in opaque and semi-transparent plastic bottles are carried out through conventional Raman spectroscopy and spatially offset Raman spectroscopy individually. The action mechanism why the spatially offset Raman spectroscopy can effectively detect the medium concealed in the non-transparent bottle is analyzed. The spatially offset Raman spectroscopy breaks through the detection neck of the conventional Raman spectroscopy (the detection depth is small and cannot detect the ingredient of the subsurface under non-transparent medium), and the measurement and identification of the substance concealed in the non-transparent medium (opaque/semi-transparent plastic) bottle have been realized.展开更多
To investigate the application of titanium polypropylene mesh in breast reconstruction.In this study,we selected the literature data in recent 4 years to analyze the application of titanium polypropylene mesh in breas...To investigate the application of titanium polypropylene mesh in breast reconstruction.In this study,we selected the literature data in recent 4 years to analyze the application of titanium polypropylene mesh in breast reconstruction.Using the keywords of"breast reconstruction,""titanium polypropylene mesh,^^"application"and"research progress,we analyzed and summarized the related research progress of titanium polypropylene mesh in breast reconstruction.The research was conducted using the analysis of titanium polypropylene mesh,titanium polypropylene mesh in breast reconstruction surgery advantages,adverse complications related to titanium polypropylene mesh in breast reconstruction surgery and preventive measures.By constantly improving these aspects in the research process,the current study has certain value,and may guide the research work of titanium mesh in breast reconstruction.展开更多
The interfacial structure of the α-Mg/14H-LPSO phase in rare earth-including magnesium alloy was investigated via high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM) imaging and first-p...The interfacial structure of the α-Mg/14H-LPSO phase in rare earth-including magnesium alloy was investigated via high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM) imaging and first-principles calculations of density-functional theory.Eleven possible interfacial models were constructed according to the different terminations of the LPSO phase,and the corresponding interfacial energies were calculated,from which the four most stable structures(Terl-MgY-hollow,Ter2-Zn-hollow,Ter3-MgYII-hollow and Ter4-Mg-bridge) were obtained.The interfacial phase diagrams related to the Y chemical potentials were obtained from the calculations,and the most stable interfacial structure was evaluated.Terl-MgY-hollow and Ter2-Zn-hollow have the lowest interfacial energies in the range of-0.7 eV <Δμγ<-0.6 eV,where fluctuating change of state is the minimized and the interface is the most stable.The separation work of the two models was calculated to predict the bonding strength of the structures at both ends of the interface.The calculation results show that the maximum interfacial separation work is 1.45 J/m^(2) for the interface model of α-Mg and 14H-LPSO phase structure with Ter2-Zn-hollow termination.展开更多
In this work,ultrasonic surface rolling process(USRP)was utilized to produce a gradient structured layer on 7 B50-T7751 aluminum alloy,and the mechanical properties and corrosion fatigue behavior of treated samples we...In this work,ultrasonic surface rolling process(USRP)was utilized to produce a gradient structured layer on 7 B50-T7751 aluminum alloy,and the mechanical properties and corrosion fatigue behavior of treated samples were studied.These results reveal that underwent USRP,a 425~m thick gradient structure and a 700~m deep compressive residual stress field are created,aluminum grain size become fine(~67 nm),and the corrosion rate of treated surface reduces by 60.08%owing to the combined effect of compressive residual stress and surface nanocrystallization.The corrosion fatigue strength is enhanced to 117%of that of 7 B50 Al alloys by means of USRP due to the introduced compressive residual stress,which is considered as the major favorable factor in suppressing the initiation and early propagation of corrosion fatigue cracks.Besides,the gradient structure is an important factor in providing a significant synergistic contribution to the improvement of corrosion fatigue performance.展开更多
The effect of a gradient nanostructured(GNS) surface layer obtained by ultrasonic surface rolling process(USRP) on the fatigue behavior of Ti-6Al-4V alloy has been studied in this paper. Microstructure, surface topogr...The effect of a gradient nanostructured(GNS) surface layer obtained by ultrasonic surface rolling process(USRP) on the fatigue behavior of Ti-6Al-4V alloy has been studied in this paper. Microstructure, surface topography, surface roughness and residual stress measurements were performed to characterize the surface under different conditions. Rotating bending fatigue tests were carried out to evaluate the fatigue behavior of different treatments. The results present a remarkable fatigue performance enhancement for the Ti-6Al-4V alloy with a GNS surface layer obtained by application of USRP with respect to the untreated condition, notwithstanding its considerable surface roughness due to severe ultrasonic impacts and extrusions. Mechanical surface polishing treatment further enhances the beneficial effects of USRP on the fatigue performance. The significantly improved fatigue performance can mainly be ascribed to the compressive residual stress. Simultaneously, the GNS surface layer and surface work hardening have a synergistic effect that accompanies the effect of compressive residual stress.展开更多
The basic principle of corrode groove on outside of steel pipe during storage was analyzed in this paper, namely the water film on the contacted surface of steel pipe, which gathered from humidity in the air, rain or ...The basic principle of corrode groove on outside of steel pipe during storage was analyzed in this paper, namely the water film on the contacted surface of steel pipe, which gathered from humidity in the air, rain or gel, and the suspended particles in air, and the corrosive composition, such as SO2, CO2, O2 and NaCI, in addition to the inhomogeneity of the organization and composition, which lead to the corrosion cell reaction, so that cause the corrosion initial from the contact surface of the between steel pipes, so as to form the corrosion groove. At the same time, the corrosion groove with depth of 0.125t (t pipe wall thickness) on the pipe of φ 1016 mm×21 mm ×70 API SPEC 5L was simulated using the FEM (finite element method), and the stress and strain distribution of the defect area near corrosion groove were solved at the inner pressure of 12 MPa, 10 MPa, 8 MPa, 6 MPa, 4 MPa and 2 MPa, respectively, which showed that no matter the pressure values were, the maximum stress and strain were lied at the bottom of corrosion defects groove and were in good linear relationship with the internal pressure increasing from 2 MPa to 6 MPa. When the internal pres- sures were greater than 6 MPa, they felled into the nonlinear model and to be yielded or even to be destroyed. In addition, the residual strength and the limit operation pressure of the corrode pipe with the defects groove of 0.125t were calculated or simulated according to the theoretical calculation, the finite element method based on the stress, the finite element method based on strain, DNV-RP-F101, ASME B31G and experimental methods respectively. The results showed that the residual strength and the limit operation pressure of the defective parts solved by the finite element method based on stress were 424 MPa, and 15.34 MPa, respectively, which was very close to that of experimental method, the residual strength was 410 MPa and the limit operation pressure 14.78 MPa. Besides, the results also showed that it was feasible and effective to simulate the residual strength of the structure with corrosion defects using the finite element method.展开更多
Transient stability assessment(TSA)is of great importance in power system operation and control.One of the usual tasks in TSA is to estimate the critical clearing time(CCT)of a given fault under the given network topo...Transient stability assessment(TSA)is of great importance in power system operation and control.One of the usual tasks in TSA is to estimate the critical clearing time(CCT)of a given fault under the given network topology and pre-fault power flow.Data-driven methods try to obtain models describing the mapping between these factors and the CCT from a large number of samples.However,the influence of network topology on CCT is hard to be analyzed and is often ignored,which makes the models inaccurate and unpractical.In this paper,a novel data-driven TSA model combining Mahalanobis kernel regression and ensemble learning is proposed to deal with the problem.The model is a weighted sum of several sub-models.Each sub-model only uses the data of one topology to construct a kernel regressor.The weights are determined by both the topological similarity and numerical similarity between the samples.The similarities are decided by the parameters in Mahalanobis distance,and the parameters are to be trained.To reduce the model complexity,sub-models within the same topology category share the same parameters.When estimating CCT,the model uses not only the sub-model which the sample topology belongs to,but also other sub-models.Thus,it avoids the problem that there may be too few data under some topologies.It also efficiently utilizes information of data under all the topologies.Moreover,its decision-making process is clear and understandable,and an effective training algorithm is also designed.Test results on both the IEEE 10-machine 39-bus and a real system verify the effectiveness of the proposed model.展开更多
基金supported by the National Natural Science Foundation of China,No.82071283(to QH)the Natural Science Foundation of Shanghai,No.22ZR1437700(to QH)。
文摘Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology.Recently,a new type of posttranslational modification,known as lysine succinylation,has been recognized to play a significant role in mitochondrial energy metabolism after ischemia.However,the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood.We aimed to review the effects of succinylation on energy metabolism,reactive oxygen species generation,and neuroinflammation,as well as Sirtuin 5 mediated desuccinylation after stroke.We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke.The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases.Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes.Sirtuins,especially Sirtuin 5,are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes.Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke.Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism,and neuroprotective effects of these agents have been observed in experimental stroke studies.However,their therapeutic efficacy in stroke patients should be validated.
文摘This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm.
文摘The Paris Agreement proposed to keep the increase in global average temperature to well below 2 ℃ abovepre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 ℃ above pre-industriallevels. It was thus the first international treaty to endow the 2 ℃ global temperature target with legal effect.The qualitative expression of the ultimate objective in Article 2 of the United Nations Framework Conventionon Climate Change (UNFCCC) has now evolved into the numerical temperature rise target in Article 2 of theParis Agreement. Starting with the Second Assessment Report (SAR) of the Intergovernmental Panel on Cli-mate Change (IPCC), an important task for subsequent assessments has been to provide scientific informa-tion to help determine the quantified long-term goal for UNFCCC negotiation. However, due to involvementin the value judgment within the scope of non-scientific assessment, the IPCC has never scientifically af-firmed the unacceptable extent of global temperature rise. The setting of the long-term goal for addressingclimate change has been a long process, and the 2 ℃ global temperature target is the political consensuson the basis of scientific assessment. This article analyzes the evolution of the long-term global goal foraddressing climate change and its impact on scientific assessment, negotiation processes, and global low-carbon development, from aspects of the origin of the target, the series of assessments carried out by the 1PCCfocusing on Article 2 of the UNFCCC, and the promotion of the global temperature goal at the political level.
基金The authors acknowledge funding support from the Natural Science Foundation of China under Grant Nos.21873017 and 21573037the Postdoctoral Science Foundation of China under Grant No.2013M541283+1 种基金the Natural Science Foundation of Hebei Province(Grant No.B2021203030)the Natural Science Foundation of Jilin Province(Grant No.20190201231JC).
文摘Although it was proposedmany years ago that compressed hydrogen should be a high-temperature superconductor,the goal of room-temperature superconductivity has so far remained out of reach.However,the successful synthesis of the theoretically predicted hydrides H3S and LaH10 with high superconducting transition temperatures TC provides clear guidance for achieving this goal.The existence of these superconducting hydrides also confirms the utility of theoretical predictions in finding high-TC superconductors.To date,numerous hydrideshave been studied theoretically or experimentally,especially binary hydrides.Interestingly,some of them exhibit superconductivity above 200 K.To gain insight into these high-TC hydrides(>200 K)and facilitate further research,we summarize their crystal structures,bonding features,and electronic properties,as well as their superconductingmechanism.Based on hydrogen structuralmotifs,covalentH3Swith isolated hydrogen and several clathrate superhydrides(LaH10,YH9,and CaH6)are highlighted.Other predicted hydrides with various H-cages and two-dimensional H motifs are also discussed.Finally,we present a systematic discussion of the common features,current problems,and future challenges of these high-TC hydrides.
文摘In order to find the effect of different viscosity modifier dosages on asphalt binder's performance in bus rapid transit lanes in the city of Chengdu, three different viscosity modifiers were analyzed: TAFPACK-super (TPS), high-viscosity additive (HVA) and road-science- technology (RST), and four different asphalt binders were investigated through laboratory experiments. The percent- ages of the viscosity modifiers used were: TPS (0%, 8%, 10%, 12%, 14% and 16%) and RST and HVA (8% and 12%) depending on the type of asphalt binder. Technical indicators of modifier asphalt were tested through con- ventional and unconventional binder tests. It has been found out that only a percentage greater than or equal to 14% TPS is reasonable to achieve the requirement set by 20,000 Pa. s for the 60℃ dynamic viscosity on local #70 grade asphalt. The results indicate that conventional bin- ders did not meet the requirements of the 60℃ dynamic viscosity when 12% of TPS or HVA modifiers were used. In addition, the B-type styrene-butadienne-styrene (SBS) modified asphalt binder has better viscosity balance than the A-type SBS modified when 8% of each of the three different kinds of viscosity modifiers is used. Therefore, the B-type modified SBS thus appears to be a suitable choice in asphalt mixtures for bus rapid transit lane with the 60℃ dynamic viscosity.
文摘Objective:Adjuvant docetaxel-based chemotherapy is frequently used for operable early breast cancer(EBC).This study investigated patterns of use of docetaxel(T)in real-life clinical practice in China.Methods:This was a retrospective pooled analysis of the Asia-Pacific Breast Initiatives(APBI)Ⅰ(2006–2008)and Ⅱ(2009–2011)registries,and two Chinese observational studies;BC STATE(2011–2014)and BC Local Registry(2007–2010).Female Chinese adults(≥18 years)with operable breast cancer treated with docetaxel-based adjuvant chemotherapy were included in the analysis.Patients with metastatic disease were excluded.The primary endpoint was assessment of treatment patterns and patient profiles.A logistic regression analysis was conducted to identify factors associated with choice of adjuvant chemotherapy regimen.Results:Data from 3,020 patients were included.The most frequently used adjuvant regimen was docetaxel/anthracycline combination[n=1,421(47.1%);of whom 52.0%received T/epirubicin(E)/cyclophosphamide(C)],followed by docetaxel/other[n=705(23.3%);of whom 72.8%received TC],docetaxel/anthracycline sequential[n=447(14.8%);of whom 40.9%and 39.6%received 5-Fu/EC-T and EC-T,respectively],and"other"[n=447(14.8%);of whom 91.5%received T].A significant association was found between adjuvant therapy with docetaxel/anthracycline combination and patient weight,menopausal status and estrogen receptor status.Conclusions:Real-world data revealed that docetaxel/anthracycline combination is the most commonly used category of docetaxel-based adjuvant therapy for patients with operable breast cancer in China;of which TEC is the most frequently used regimen.
基金supported by the National Natural Science Foundation of China(61471313)the Natural Science Foundation of Hebei Province(F2019203318)
文摘Removing rain from a single image is a challenging task due to the absence of temporal information. Considering that a rainy image can be decomposed into the low-frequency(LF) and high-frequency(HF) components, where the coarse scale information is retained in the LF component and the rain streaks and texture correspond to the HF component, we propose a single image rain removal algorithm using image decomposition and a dense network. We design two task-driven sub-networks to estimate the LF and non-rain HF components of a rainy image. The high-frequency estimation sub-network employs a densely connected network structure, while the low-frequency sub-network uses a simple convolutional neural network(CNN).We add total variation(TV) regularization and LF-channel fidelity terms to the loss function to optimize the two subnetworks jointly. The method then obtains de-rained output by combining the estimated LF and non-rain HF components.Extensive experiments on synthetic and real-world rainy images demonstrate that our method removes rain streaks while preserving non-rain details, and achieves superior de-raining performance both perceptually and quantitatively.
基金This work was supported by National Natural Science Foundation of China (10574038);development project of high-tech industry of universities in Jiangsu (JHB05-08);Changzhou scientific and technological bureau (CE2005026).
文摘Based on piezoelectric ultrasound technology,the paper theoretically analyses the determination of gas concentration and presents a norm-contrast method,which is realized by high-speed chip CPLD (Complex programmable logic device),to determine the concentration of SF_6 accurately with air as background.It is proved that this sensor can determine the concentration of SF_6 with the precision of 50μg/g.The sensor is in the process of producing.
基金This work was supported by the Natural Science Foundation of China under Grant No.21573037the Postdoctoral Science Foundation of China under Grant No.2013M541283+4 种基金the Natural Science Foundation of Hebei Province(Grant No.B2021203030)the Science and Technology Project of Hebei Education Department(Grant Nos.JZX2023020 and QN2023246)A.B.acknowledges financial support from the Spanish Ministry of Science and Innovation(Grant No.PID2019-105488GB-I00)the Department of Education,Universities and Research of the Basque Government and the University of the Basque Country(Grant No.IT1707-22)This work was carried out at the National Supercomputer Center in Tianjin,and the calculations were performed on TianHe-1(A).
文摘Superionic and electride behaviors in materials,which induce a variety of exotic physical properties of ions and electrons,are of great importance both in fundamental research and for practical applications.However,their coexistence in hot alkali-metal borides has not been observed.In this work,we apply first-principles structure search calculations to identify eight Na-B compounds with host-guest structures,which exhibit a wide range of building blocks and interesting properties linked to the Na/B composition.Among the known borides,Na-rich Na9B stands out as the composition with the highest alkali-metal content,featuring vertex-and face-sharing BNa16 polyhedra.Notably,it exhibits electride characteristics and transforms into a superionic electride at 200 GPa and 2000 K,displaying unusual Na atomic diffusion behavior attributed to the modulation of the interstitial anion electrons.It demonstrates semiconductor behavior in the solid state,and metallic properties associated with Na 3p/3s states in the superionic and liquid regions.On the other hand,B-rich NaB7,consisting of a unique covalent B framework,is predicted to exhibit low-frequency phonon-mediated superconductivity with a T_(c) of 16.8 K at 55 GPa.Our work advances the understanding of the structures and properties of alkali-metal borides.
文摘A carbonization method is reported to improve the thermal conductivity of carbon nanotube (CNT) arrays. After being impregnated with phenolic resins, CNT arrays were carbonized at a temperature up to 1400°C. As a result, pyrolytic carbon was formed and connected non-neighboring CNTs. The pyrolysis improved the room temperature conductivity from below 2 W/m·K up to 11.8 and 14.6 W/m·K with carbonization at 800°C and 1400°C, respectively. Besides the light mass density of 1.1 g/cm3, the C/C composites demonstrated high thermal stability and a higher conductivity up to 21.4 W/m·K when working at 500°C.
基金the Natural Science Foundation of China(Grant Nos.21873017 and 21573037)the Natural Science Foundation of Hebei Province(Grant Nos.A2019203507 and B2021203030)+2 种基金the Postdoctoral Science Foundation of China(Grant No.2013M541283)the Natural Science Foundation of Jilin Province(Grant No.20190201231JC)the National Supercomputer Center in Tianjin,and the calculations were performed on TianHe-1(A).
文摘The covalent frameworks found in certain compounds,such as the S–H skeleton in H3S and the H cage in LaH10,play an essential role in their superconductivity.These compounds have the feature of bonding unsaturation(a deficiency of electrons in their covalent bonding)in common.Developing an understanding of the relationship between superconductivity and bonding unsaturation in these materials can provide new ideas for the design of superconducting materials.In this work,we explored the high-pressure phase diagram of binary P–S compounds using first-principles swarm structural calculations.In addition to the previously reported P2S and P3S structures,we identified that P5S,P8S,and P11S also have a common structural character of six-coordinated octahedral networks;however,their bonding unsaturation are distinct due to the different valence electron numbers and unequal ratios of P and S atoms.These features provide an ideal model for exploring the bonding-unsaturation dependence of superconductivity.We estimated the average bonding unsaturation of these P-rich compounds based on the valence electron numbers and the coordination numbers of the central P/S atoms.Interestingly,the resultant average bonding unsaturation was found to be proportional to the predicted superconducting transition temperature.This finding was also verified in MH9(M=Y,Th,and Pr)and doped H3S(Si,C,and P)compounds.Our work provides an opportunity to gain a deeper understanding of bonding-unsaturation-dependent superconductivity.
文摘Measurement and comparison of NaNO3 powder concealed in opaque and semi-transparent plastic bottles are carried out through conventional Raman spectroscopy and spatially offset Raman spectroscopy individually. The action mechanism why the spatially offset Raman spectroscopy can effectively detect the medium concealed in the non-transparent bottle is analyzed. The spatially offset Raman spectroscopy breaks through the detection neck of the conventional Raman spectroscopy (the detection depth is small and cannot detect the ingredient of the subsurface under non-transparent medium), and the measurement and identification of the substance concealed in the non-transparent medium (opaque/semi-transparent plastic) bottle have been realized.
文摘To investigate the application of titanium polypropylene mesh in breast reconstruction.In this study,we selected the literature data in recent 4 years to analyze the application of titanium polypropylene mesh in breast reconstruction.Using the keywords of"breast reconstruction,""titanium polypropylene mesh,^^"application"and"research progress,we analyzed and summarized the related research progress of titanium polypropylene mesh in breast reconstruction.The research was conducted using the analysis of titanium polypropylene mesh,titanium polypropylene mesh in breast reconstruction surgery advantages,adverse complications related to titanium polypropylene mesh in breast reconstruction surgery and preventive measures.By constantly improving these aspects in the research process,the current study has certain value,and may guide the research work of titanium mesh in breast reconstruction.
基金Project supported by the Key Research and Development Program of Heilongjiang (2022ZX01A01)Natural Science Foundation of Heilongjiang Province (LH2022E080)。
文摘The interfacial structure of the α-Mg/14H-LPSO phase in rare earth-including magnesium alloy was investigated via high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM) imaging and first-principles calculations of density-functional theory.Eleven possible interfacial models were constructed according to the different terminations of the LPSO phase,and the corresponding interfacial energies were calculated,from which the four most stable structures(Terl-MgY-hollow,Ter2-Zn-hollow,Ter3-MgYII-hollow and Ter4-Mg-bridge) were obtained.The interfacial phase diagrams related to the Y chemical potentials were obtained from the calculations,and the most stable interfacial structure was evaluated.Terl-MgY-hollow and Ter2-Zn-hollow have the lowest interfacial energies in the range of-0.7 eV <Δμγ<-0.6 eV,where fluctuating change of state is the minimized and the interface is the most stable.The separation work of the two models was calculated to predict the bonding strength of the structures at both ends of the interface.The calculation results show that the maximum interfacial separation work is 1.45 J/m^(2) for the interface model of α-Mg and 14H-LPSO phase structure with Ter2-Zn-hollow termination.
基金supported financially by the National Natural Science Foundation of China(No.51771155)the Equipment Pre-research Field Foundation(No.61409220202).
文摘In this work,ultrasonic surface rolling process(USRP)was utilized to produce a gradient structured layer on 7 B50-T7751 aluminum alloy,and the mechanical properties and corrosion fatigue behavior of treated samples were studied.These results reveal that underwent USRP,a 425~m thick gradient structure and a 700~m deep compressive residual stress field are created,aluminum grain size become fine(~67 nm),and the corrosion rate of treated surface reduces by 60.08%owing to the combined effect of compressive residual stress and surface nanocrystallization.The corrosion fatigue strength is enhanced to 117%of that of 7 B50 Al alloys by means of USRP due to the introduced compressive residual stress,which is considered as the major favorable factor in suppressing the initiation and early propagation of corrosion fatigue cracks.Besides,the gradient structure is an important factor in providing a significant synergistic contribution to the improvement of corrosion fatigue performance.
基金financially supported by the National Natural Science Foundation of China (No. 51771155)
文摘The effect of a gradient nanostructured(GNS) surface layer obtained by ultrasonic surface rolling process(USRP) on the fatigue behavior of Ti-6Al-4V alloy has been studied in this paper. Microstructure, surface topography, surface roughness and residual stress measurements were performed to characterize the surface under different conditions. Rotating bending fatigue tests were carried out to evaluate the fatigue behavior of different treatments. The results present a remarkable fatigue performance enhancement for the Ti-6Al-4V alloy with a GNS surface layer obtained by application of USRP with respect to the untreated condition, notwithstanding its considerable surface roughness due to severe ultrasonic impacts and extrusions. Mechanical surface polishing treatment further enhances the beneficial effects of USRP on the fatigue performance. The significantly improved fatigue performance can mainly be ascribed to the compressive residual stress. Simultaneously, the GNS surface layer and surface work hardening have a synergistic effect that accompanies the effect of compressive residual stress.
基金supported by the National Natural Science Foundation of China(Nos.51101127 and 51171154)Soar Star of Northwestern Polytechnical University(2011)Fundamental Research Foundation of Northwestern Polytechnical University(No.JC201213)
文摘The basic principle of corrode groove on outside of steel pipe during storage was analyzed in this paper, namely the water film on the contacted surface of steel pipe, which gathered from humidity in the air, rain or gel, and the suspended particles in air, and the corrosive composition, such as SO2, CO2, O2 and NaCI, in addition to the inhomogeneity of the organization and composition, which lead to the corrosion cell reaction, so that cause the corrosion initial from the contact surface of the between steel pipes, so as to form the corrosion groove. At the same time, the corrosion groove with depth of 0.125t (t pipe wall thickness) on the pipe of φ 1016 mm×21 mm ×70 API SPEC 5L was simulated using the FEM (finite element method), and the stress and strain distribution of the defect area near corrosion groove were solved at the inner pressure of 12 MPa, 10 MPa, 8 MPa, 6 MPa, 4 MPa and 2 MPa, respectively, which showed that no matter the pressure values were, the maximum stress and strain were lied at the bottom of corrosion defects groove and were in good linear relationship with the internal pressure increasing from 2 MPa to 6 MPa. When the internal pres- sures were greater than 6 MPa, they felled into the nonlinear model and to be yielded or even to be destroyed. In addition, the residual strength and the limit operation pressure of the corrode pipe with the defects groove of 0.125t were calculated or simulated according to the theoretical calculation, the finite element method based on the stress, the finite element method based on strain, DNV-RP-F101, ASME B31G and experimental methods respectively. The results showed that the residual strength and the limit operation pressure of the defective parts solved by the finite element method based on stress were 424 MPa, and 15.34 MPa, respectively, which was very close to that of experimental method, the residual strength was 410 MPa and the limit operation pressure 14.78 MPa. Besides, the results also showed that it was feasible and effective to simulate the residual strength of the structure with corrosion defects using the finite element method.
基金supported by National Key R&D Program of China(No.2018YFB0904500)State Grid Corporation of China(No.SGLNDK00KJJS1800236)
文摘Transient stability assessment(TSA)is of great importance in power system operation and control.One of the usual tasks in TSA is to estimate the critical clearing time(CCT)of a given fault under the given network topology and pre-fault power flow.Data-driven methods try to obtain models describing the mapping between these factors and the CCT from a large number of samples.However,the influence of network topology on CCT is hard to be analyzed and is often ignored,which makes the models inaccurate and unpractical.In this paper,a novel data-driven TSA model combining Mahalanobis kernel regression and ensemble learning is proposed to deal with the problem.The model is a weighted sum of several sub-models.Each sub-model only uses the data of one topology to construct a kernel regressor.The weights are determined by both the topological similarity and numerical similarity between the samples.The similarities are decided by the parameters in Mahalanobis distance,and the parameters are to be trained.To reduce the model complexity,sub-models within the same topology category share the same parameters.When estimating CCT,the model uses not only the sub-model which the sample topology belongs to,but also other sub-models.Thus,it avoids the problem that there may be too few data under some topologies.It also efficiently utilizes information of data under all the topologies.Moreover,its decision-making process is clear and understandable,and an effective training algorithm is also designed.Test results on both the IEEE 10-machine 39-bus and a real system verify the effectiveness of the proposed model.