The main objectives of the research are to characterize the wind-induced resonant and slowly-varying (quasi-static) responses of a tall building under ambient wind excitations based on GPS measurements. The equipment ...The main objectives of the research are to characterize the wind-induced resonant and slowly-varying (quasi-static) responses of a tall building under ambient wind excitations based on GPS measurements. The equipment used includes two sets of orthogonally aligned accelerometers, two GPS receivers and an ultrasonic anemometer. The natural frequencies of the wind-induced vibration of the tall building are determined by carrying out spectral analysis of the measured time series of acceleration. The time series are also used to estimate the structural damping with the random decrement technique (RDT). The results show that GPS can be effectively used to measure the resonant and slowly-varying responses of tall buildings with 3D mode shapes under wind excitations. The results from the GPS and the accelerometers agree well with each other in both the time and frequency domains.展开更多
Grain growth of magnesium(Mg)and its hydride is one of the main reasons for kinetic and capacity degradation during the hydrogen absorption and desorption cycles.To solve this problem,herein we propose a novel method ...Grain growth of magnesium(Mg)and its hydride is one of the main reasons for kinetic and capacity degradation during the hydrogen absorption and desorption cycles.To solve this problem,herein we propose a novel method involving synergistic effect of inside embedded metals and outside coated graphene to limit the growth of Mg and its hydride grains.The graphene coated Mg-Y-Al alloys were selected as a model system for demonstrating this positive effect where the Mg_(91)Y_(3)Al_(6)alloy was first prepared by rapidly solidified method and then high-pressure milled with 5 wt%graphene upon 5 MPa hydrogen gas for obtaining in-situ formed YAl_(2)and YH_(3)embedded in the MgH_(2)matrix with graphene shell(denoted as MgH_(2)-Y-Al@GR).In comparison to pure MgH_(2),the obtained MgH_(2)-Y-Al@GR composites deliver much better kinetics and more stable cyclic performance.For instance,the MgH_(2)-Y-Al@GR can release about 6.1 wt%H_(2)within 30 min at 300℃ but pure MgH_(2)only desorbs∼1.5 wt%H_(2).The activation energy for desorption of MgH_(2)-Y-Al@GR samples is calculated to be 75.3±9.1 kJ/mol that is much lower than approximately 160 kJ/mol for pure MgH_(2).Moreover,its capacity retention is promoted from∼57%of pure MgH_(2)to∼84%after 50th cycles without obvious particle agglomeration and grain growth.The synergistic effect of outside graphene coating with inside embedded metals which could provide a huge number of active sites for catalysis as well as inhibit the grain growth of Mg and its hydride is believed to be responsible for these.展开更多
Up-to-date digital elevation model(DEM)products are essential in many fields such as hazards mitigation and urban management.Airborne and low-earth-orbit(LEO)space-borne interferometric synthetic aperture radar(InSAR)...Up-to-date digital elevation model(DEM)products are essential in many fields such as hazards mitigation and urban management.Airborne and low-earth-orbit(LEO)space-borne interferometric synthetic aperture radar(InSAR)has been proven to be a valuable tool for DEM generation.However,given the limitations of cost and satellite repeat cycles,it is difficult to generate or update DEMs very frequently(e.g.,on a daily basis)for a very large area(e.g.,continental scale or greater).Geosynchronous synthetic aperture radar(GEOSAR)satellites fly in geostationary earth orbits,allowing them to observe the same ground area with a very short revisit time(daily or shorter).This offers great potential for the daily DEM generation that is desirable yet thus far impossible with space-borne sensors.In this work,we systematically analyze the quality of daily GEOSAR DEM.The results indicate that the accuracy of a daily GEOSAR DEM is generally much lower than what can be achieved with typical LEO synthetic aperture radar(SAR)sensors;therefore,it is important to develop techniques to mitigate the effects of errors in GEOSAR DEM generation.展开更多
Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR), used for monitoring crust deformation, are found to be very promising in earthquake prediction subject to stress-forecasting. H...Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR), used for monitoring crust deformation, are found to be very promising in earthquake prediction subject to stress-forecasting. However, it is recognized that unless we can give reasonable explanations of these curious precursory phenomena that continue to be serendipitously observed from time to time, such high technology of GPS or InSAR is difficult to be efficiently used. Therefore, a proper model revealing the relation between earthquake evolution and stress variation, such as the phenomena of stress buildup, stress shadow and stress transfer (SSS), is crucial to the GPS or InSAR based earthquake prediction. Here we address this question through a numerical approach of earthquake development using an intuitive physical model with a map-like configuration of discontinuous fault system. The simulation provides a physical basis for the principle of stress-forecasting of earthquakes based on SSS and for the application of GPS or InSAR in earthquake prediction. The observed SSS associated phenomena with images of stress distribution during the failure process can be continuously simulated. It is shown that the SSS are better indicators of earthquake precursors than that of seismic foreshocks, suggesting a predictability of earthquakes based on stress-forecasting strategy.展开更多
Interferometric synthetic aperture radar(InSAR)has been widely used to measure ground displacements related to geophysical and anthropic activities over the past three decades.Satellite SAR systems use microwave signa...Interferometric synthetic aperture radar(InSAR)has been widely used to measure ground displacements related to geophysical and anthropic activities over the past three decades.Satellite SAR systems use microwave signals that interact with the ionosphere when they travel through it during the imaging processes.In this context,ionospheric variations can significantly contaminate SAR imagery,which in turn affects spaceborne InSAR measurements.This bias also leads to a decrease in the coherence and accuracy of InSAR measurements,especially for the low-frequency SAR systems.In this paper,we give an overview of the latest methods for mitigating the ionospheric contributions in InSAR,including Faraday rotation method,azimuth shift method,and range split-spectrum method,and only focus on the single pair of InSAR interferograms.The current challenges and future perspectives are outlined at the end of this paper.展开更多
Metallic ion-cross-linked polymer of intrinsic microporosity(PIM-1) thin-film composite(TFC) membranes supported on an ultraviolet(UV)-cross-linked porous substrate were fabricated. The UV-cross-linked porous substrat...Metallic ion-cross-linked polymer of intrinsic microporosity(PIM-1) thin-film composite(TFC) membranes supported on an ultraviolet(UV)-cross-linked porous substrate were fabricated. The UV-cross-linked porous substrate was prepared via polymerization-induced phase separation. The PIM-1 TFC membranes were fabricated via a dip-coating procedure. Metallic ion-cross-linked PIM-1 TFC membranes were fabricated by hydrolyzing the PIM-1 TFC membrane in an alkali solution and then cross-linking it in a multivalent metallic ion solution. The pore size and porous structures were evaluated by low-temperature N_2 adsorption–desorption analysis. The membrane structure was investigated by field-emission scanning electron microscopy. The effects of heat treatment and pore-forming additives on the gas permeance of the UV-cross-linked porous substrate are reported. The effects of different pre-coating treatments on the gas permeance of the metallic ion-cross-linked PIM-1 TFC membrane are also discussed. The metallic ion-crosslinked PIM-1 TFC membrane displayed high CO_2/N_2 selectivity(23) and good CO_2 permeance(1058 GPU).展开更多
Nonlinear fractional differential-algebraic equations often arise in simulating integrated circuits with superconductors. How to obtain the nonnegative solutions of the equations is an important scientific problem. As...Nonlinear fractional differential-algebraic equations often arise in simulating integrated circuits with superconductors. How to obtain the nonnegative solutions of the equations is an important scientific problem. As far as we known, the nonnegativity of solutions of the nonlinear fractional differential-algebraic equations is still not studied. In this article, we investigate the nonnegativity of solutions of the equations. Firstly, we discuss the existence of nonnegative solutions of the equations, and then we show that the nonnegative solution can be approached by a monotone waveform relaxation sequence provided the initial iteration is chosen properly. The choice of initial iteration is critical and we give a method of finding it. Finally, we present an example to illustrate the efficiency of our method.展开更多
Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes...Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes(MMMs) by in situ polymerization for CO_2/CH_4 separation. The solvent-free polymerization between PEGMEA and PETA was induced by UV light with 1-hydroxylcyclohexyl phenyl ketone as initiator. The chemical structural characterization was performed by Fourier transform infrared spectroscopy. The morphology was characterized by scanning electron microscope. The average chain-to-chain distance of the polymer chains in MMMs was investigated by X-ray diffraction. The thermal property was evaluated by differential scanning calorimetry. The CH_4 and CO_2 gas transport properties of MMMs are reported. The relationship between gas permeation–separation performances or physical properties and ZIF-8 loading is also discussed. However, the permeation–separation performance was not improved in Robeson upper bound plot compared with original polymer membrane as predicted. The significant partial pore blockage and polymer rigidification effect around the ZIFs confirmed by the increase in glass temperature and the decrease in the d-spacing, were mainly responsible for the failure in performance improvement, which offset the high diffusion induced by porous ZIF-8.展开更多
Leukemia inhibitory factor(LIF) contributes to the neuroprotection by neural stem cells(NSCs) after ischemic stroke. Our aim was to explore whether LIFtransfected NSCs(LIF-NSCs) can ameliorate brain injury and promote...Leukemia inhibitory factor(LIF) contributes to the neuroprotection by neural stem cells(NSCs) after ischemic stroke. Our aim was to explore whether LIFtransfected NSCs(LIF-NSCs) can ameliorate brain injury and promote neuroprotection in a rat model of cerebral ischemia. To accomplish this goal, we transfected NSCs with a lentivirus carrying the LIF gene to stably overexpress LIF. The LIF-NSCs reduced caspase 3 activation under conditions of oxygen-glucose deprivation in vitro.Transient cerebral ischemia was induced in rats by 2 h of middle cerebral artery occlusion(MCAo), and LIF-NSCs were intravenously injected at 6 h post-ischemia. LIF-NSC treatment reduced the infarction volume and improved neurological recovery. Moreover, LIF-NSCs improved glial cell regeneration and ameliorated white matter injuryin the MCAo rats. The NSCs acted as carriers and increased the expression of LIF in the lesions to protect against cerebral infarction, suggesting that LIF-NSCs could be a potential treatment for cerebral infarction.展开更多
Mixed matrix membranes(MMMs)with the performance between the matrix and the filler is a promising strategy for membranes with excellent gas permeability-selectivity.In this study,the hollow polydimethylsiloxane nanopa...Mixed matrix membranes(MMMs)with the performance between the matrix and the filler is a promising strategy for membranes with excellent gas permeability-selectivity.In this study,the hollow polydimethylsiloxane nanoparticles were synthesized and then incorporated with the poly(oxide ethylene)monomer and tri-functional cross-linker to form mixed matrix membranes by in situ poly-merization.The hollow nanoparticles formed the independent closed nanocavities in membranes,which enhanced the gas permeability contributed by both the improved diffusivity and solubility.At high loading,the hollow polydimethylsiloxane nanoparticle was converted into the continuous phase with the cross-linked poly(oxide ethylene)as the dispersed phase.Gases preferred to permeate through the connected cluster of hollow polydimethylsiloxane nanoparticles,finally leading to ultrahigh gas per-meabilities far going beyond the instinct values of polydimethylsiloxane and the cross-linked poly(oxide ethylene).The optimized membrane with 34 wt%hollow nanoparticles loadings exhibited ultrahigh permeabilities with the values of 44186 Barrer for CO_(2) and 11506 Barrer for O_(2),accompanied with a CO_(2)/N_(2) selectivity of 9.9 and an O_(2)/N_(2) selectivity of 2.6,which exceeded the 2008 Robeson upper bound for O_(2)/N_(2) and located at the 2008 Robeson upper bound for CO_(2)/N_(2).展开更多
Speckle noise in synthetic-aperture radar (SAR) images severely hindersremote sensing applications;therefore, the appropriate removal ofspeckle noise is crucial. This paper elaborates on the multilayerperceptron (MLP)...Speckle noise in synthetic-aperture radar (SAR) images severely hindersremote sensing applications;therefore, the appropriate removal ofspeckle noise is crucial. This paper elaborates on the multilayerperceptron (MLP) neural-network model for SAR image despeckling byusing a time series of SAR images. Unlike other filtering methods thatuse only a single radar intensity image to derive their parameters andfilter that single image, this method can be trained using archivedimages over an area of interest to self-learn the intensitycharacteristics of image patches and then adaptively determine theweights and thresholds by using a neural network for imagedespeckling. Several hidden layers are designed for feedforwardnetwork training, and back-propagation stochastic gradient descent isadopted to reduce the error between the target output and neuralnetwork output. The parameters in the network are automaticallyupdated in the training process. The greatest advantage of MLP is thatonce the despeckling parameters are determined, they can be used toprocess not only new images in the same area but also images incompletely different locations. Tests with images from TerraSAR-X inselected areas indicated that MLP shows satisfactory performance withrespect to noise reduction and edge preservation. The overall imagequality obtained using MLP was markedly higher than that obtainedusing numerous other filters. In comparison with other recentlydeveloped filters, this method yields a slightly higher image quality,and it demonstrates the powerful capabilities of computer learningusing SAR images, which indicate the promising prospect of applyingMLP to SAR image despeckling.展开更多
One type of new light-responsive hierarchical metal organic framework(MOF) has been successfully prepared using Co(NO_(3))_(3)·6H_(2)O as the metal salt and 4,4’-azobenzenedicarboxylic acid as the ligand by micr...One type of new light-responsive hierarchical metal organic framework(MOF) has been successfully prepared using Co(NO_(3))_(3)·6H_(2)O as the metal salt and 4,4’-azobenzenedicarboxylic acid as the ligand by microwave method for the first time. It is found that MOF [Co(Az DC)] exhibits a light-responsive characteristic to SO_(2)adsorption due to the presence of azo group from the ligand. The light-responsive hierarchical MOFs are incorporated into Matrimid■ 5218(PI) matrix to prepare mixed matrix membranes(MMMs) for gas separation application. The morphology, crystallinity, chain mobility and thermal stability of MMMs are explored. Results show that Co(Az DC) may elevate both the CO_(2)(SO_(2)) permeability and CO_(2)(SO_(2))/N_(2)selectivity of the MMMs. In particular,the Co(Az DC) doped MMMs exhibit the significantly improved CO_(2)(SO_(2))/N_(2)selectivity from 33(123) for PI control membrane to 78(420) for MMMs, overcoming the 2008 Robeson upper bound for CO_(2)/N_(2)system. Sizesieving effect of Co(Az DC) with pore size 0.35 nm enhances the selectivity, while the –N=N– group from Co(Az DC) shows affinity to CO_(2)molecular rather than N_(2), also elevating selectivity of MMMs. In brief, enhanced selectivity of high-performance membrane is attributed to incorporation of Co(Az DC) particles, which displays synergistic effects both in size-sieving and CO_(2)-philic interaction for CO_(2)/N_(2)separation. Smart highly selective interface is constructed in MMMs by switching the configuration of MOFs from cis to trans. The SO_(2)permeability and SO_(2)/N_(2)selectivity of MMMs are investigated under both visible light and ultraviolet light states, and the SO_(2)/N_(2)separation performance under visible light is notably improved in comparison with that under ultraviolet light state.展开更多
文摘The main objectives of the research are to characterize the wind-induced resonant and slowly-varying (quasi-static) responses of a tall building under ambient wind excitations based on GPS measurements. The equipment used includes two sets of orthogonally aligned accelerometers, two GPS receivers and an ultrasonic anemometer. The natural frequencies of the wind-induced vibration of the tall building are determined by carrying out spectral analysis of the measured time series of acceleration. The time series are also used to estimate the structural damping with the random decrement technique (RDT). The results show that GPS can be effectively used to measure the resonant and slowly-varying responses of tall buildings with 3D mode shapes under wind excitations. The results from the GPS and the accelerometers agree well with each other in both the time and frequency domains.
基金financially supported by the Key Program for International S&T Cooperation Projects of China(No.2017YFE0124300)National Natural Science Foundation of China(No.52171205,51971002 and 52171197)+1 种基金Scientific Research Foundation of Anhui Provincial Education Department(Nos.KJ2020ZD26,KJ2021A0360)Anhui Provincial Natural Science Foundation for Excellent Youth Scholars(No.2108085Y16).
文摘Grain growth of magnesium(Mg)and its hydride is one of the main reasons for kinetic and capacity degradation during the hydrogen absorption and desorption cycles.To solve this problem,herein we propose a novel method involving synergistic effect of inside embedded metals and outside coated graphene to limit the growth of Mg and its hydride grains.The graphene coated Mg-Y-Al alloys were selected as a model system for demonstrating this positive effect where the Mg_(91)Y_(3)Al_(6)alloy was first prepared by rapidly solidified method and then high-pressure milled with 5 wt%graphene upon 5 MPa hydrogen gas for obtaining in-situ formed YAl_(2)and YH_(3)embedded in the MgH_(2)matrix with graphene shell(denoted as MgH_(2)-Y-Al@GR).In comparison to pure MgH_(2),the obtained MgH_(2)-Y-Al@GR composites deliver much better kinetics and more stable cyclic performance.For instance,the MgH_(2)-Y-Al@GR can release about 6.1 wt%H_(2)within 30 min at 300℃ but pure MgH_(2)only desorbs∼1.5 wt%H_(2).The activation energy for desorption of MgH_(2)-Y-Al@GR samples is calculated to be 75.3±9.1 kJ/mol that is much lower than approximately 160 kJ/mol for pure MgH_(2).Moreover,its capacity retention is promoted from∼57%of pure MgH_(2)to∼84%after 50th cycles without obvious particle agglomeration and grain growth.The synergistic effect of outside graphene coating with inside embedded metals which could provide a huge number of active sites for catalysis as well as inhibit the grain growth of Mg and its hydride is believed to be responsible for these.
基金This work was partly supported by the Research Grants Council(RGC)of Hong Kong Special Administrative Region(PolyU 152232/17E and PolyU 152164/18E)Research Institute for Sustainable Urban Development of the Hong Kong Polytechnic University(1-BBWB).
文摘Up-to-date digital elevation model(DEM)products are essential in many fields such as hazards mitigation and urban management.Airborne and low-earth-orbit(LEO)space-borne interferometric synthetic aperture radar(InSAR)has been proven to be a valuable tool for DEM generation.However,given the limitations of cost and satellite repeat cycles,it is difficult to generate or update DEMs very frequently(e.g.,on a daily basis)for a very large area(e.g.,continental scale or greater).Geosynchronous synthetic aperture radar(GEOSAR)satellites fly in geostationary earth orbits,allowing them to observe the same ground area with a very short revisit time(daily or shorter).This offers great potential for the daily DEM generation that is desirable yet thus far impossible with space-borne sensors.In this work,we systematically analyze the quality of daily GEOSAR DEM.The results indicate that the accuracy of a daily GEOSAR DEM is generally much lower than what can be achieved with typical LEO synthetic aperture radar(SAR)sensors;therefore,it is important to develop techniques to mitigate the effects of errors in GEOSAR DEM generation.
基金supported by the National Key Basic Research Science Foundation (No.2007CB209400)the National Natural Science Foundation of China (No.40638040,10672028)the Chinese Postdoctoral Science Foundation (No.20070421048)
文摘Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR), used for monitoring crust deformation, are found to be very promising in earthquake prediction subject to stress-forecasting. However, it is recognized that unless we can give reasonable explanations of these curious precursory phenomena that continue to be serendipitously observed from time to time, such high technology of GPS or InSAR is difficult to be efficiently used. Therefore, a proper model revealing the relation between earthquake evolution and stress variation, such as the phenomena of stress buildup, stress shadow and stress transfer (SSS), is crucial to the GPS or InSAR based earthquake prediction. Here we address this question through a numerical approach of earthquake development using an intuitive physical model with a map-like configuration of discontinuous fault system. The simulation provides a physical basis for the principle of stress-forecasting of earthquakes based on SSS and for the application of GPS or InSAR in earthquake prediction. The observed SSS associated phenomena with images of stress distribution during the failure process can be continuously simulated. It is shown that the SSS are better indicators of earthquake precursors than that of seismic foreshocks, suggesting a predictability of earthquakes based on stress-forecasting strategy.
基金This work was supported by the National Key Research and Development Program of China(2020YFC1512001)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515011427)+6 种基金the Research Grants Council of the Hong Kong Special Administrative Region(Projects PolyU 152232/17E,PolyU 152164/18Eand PolyU152233/19E)the National NaturalScience Foundation of China(Grants 41790445,41974006,42074040 and 41941019)the Shenzhen Scientific Research and Development Funding Program(Nos.20200807110745001,KQJSCX20180328093453763and20200812164904001)the Department of Education of Guangdong(218KTSCX196)the Fundamental Research Funds for the Central Universities(300102269207)the Research Institute for Sustainable Urban Development(RISUD)(BBWB)the Innovation and Technology Fund of Hong Kong(ITP/019/20LP).
文摘Interferometric synthetic aperture radar(InSAR)has been widely used to measure ground displacements related to geophysical and anthropic activities over the past three decades.Satellite SAR systems use microwave signals that interact with the ionosphere when they travel through it during the imaging processes.In this context,ionospheric variations can significantly contaminate SAR imagery,which in turn affects spaceborne InSAR measurements.This bias also leads to a decrease in the coherence and accuracy of InSAR measurements,especially for the low-frequency SAR systems.In this paper,we give an overview of the latest methods for mitigating the ionospheric contributions in InSAR,including Faraday rotation method,azimuth shift method,and range split-spectrum method,and only focus on the single pair of InSAR interferograms.The current challenges and future perspectives are outlined at the end of this paper.
基金Supported by the National Natural Science Foundation of China(21506160,21776217)the Science and Technology Plans of Tianjin(16PTSYJC00110)
文摘Metallic ion-cross-linked polymer of intrinsic microporosity(PIM-1) thin-film composite(TFC) membranes supported on an ultraviolet(UV)-cross-linked porous substrate were fabricated. The UV-cross-linked porous substrate was prepared via polymerization-induced phase separation. The PIM-1 TFC membranes were fabricated via a dip-coating procedure. Metallic ion-cross-linked PIM-1 TFC membranes were fabricated by hydrolyzing the PIM-1 TFC membrane in an alkali solution and then cross-linking it in a multivalent metallic ion solution. The pore size and porous structures were evaluated by low-temperature N_2 adsorption–desorption analysis. The membrane structure was investigated by field-emission scanning electron microscopy. The effects of heat treatment and pore-forming additives on the gas permeance of the UV-cross-linked porous substrate are reported. The effects of different pre-coating treatments on the gas permeance of the metallic ion-cross-linked PIM-1 TFC membrane are also discussed. The metallic ion-crosslinked PIM-1 TFC membrane displayed high CO_2/N_2 selectivity(23) and good CO_2 permeance(1058 GPU).
基金supported by the Natural Science Foundation of China(NSFC)under grant 11501436Young Talent fund of University Association for Science and Technology in Shaanxi,China(20170701)
文摘Nonlinear fractional differential-algebraic equations often arise in simulating integrated circuits with superconductors. How to obtain the nonnegative solutions of the equations is an important scientific problem. As far as we known, the nonnegativity of solutions of the nonlinear fractional differential-algebraic equations is still not studied. In this article, we investigate the nonnegativity of solutions of the equations. Firstly, we discuss the existence of nonnegative solutions of the equations, and then we show that the nonnegative solution can be approached by a monotone waveform relaxation sequence provided the initial iteration is chosen properly. The choice of initial iteration is critical and we give a method of finding it. Finally, we present an example to illustrate the efficiency of our method.
基金Supported by the National Natural Science Foundation of China(21776217,21506160)Tianjin Research Program of Application Foundation and Advanced Technology(14JCQNJC06400)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars(48)the Science and Technology Plans of Tianjin(16PTSYJC00110)
文摘Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes(MMMs) by in situ polymerization for CO_2/CH_4 separation. The solvent-free polymerization between PEGMEA and PETA was induced by UV light with 1-hydroxylcyclohexyl phenyl ketone as initiator. The chemical structural characterization was performed by Fourier transform infrared spectroscopy. The morphology was characterized by scanning electron microscope. The average chain-to-chain distance of the polymer chains in MMMs was investigated by X-ray diffraction. The thermal property was evaluated by differential scanning calorimetry. The CH_4 and CO_2 gas transport properties of MMMs are reported. The relationship between gas permeation–separation performances or physical properties and ZIF-8 loading is also discussed. However, the permeation–separation performance was not improved in Robeson upper bound plot compared with original polymer membrane as predicted. The significant partial pore blockage and polymer rigidification effect around the ZIFs confirmed by the increase in glass temperature and the decrease in the d-spacing, were mainly responsible for the failure in performance improvement, which offset the high diffusion induced by porous ZIF-8.
基金supported by the National Natural Science Foundation of China (81571596, 81601044, and 81771279)the National Basic Research Development Program of China (2017YFC1701300)Fundamental Research Funds for the Central Universities, China (GK201701009)
文摘Leukemia inhibitory factor(LIF) contributes to the neuroprotection by neural stem cells(NSCs) after ischemic stroke. Our aim was to explore whether LIFtransfected NSCs(LIF-NSCs) can ameliorate brain injury and promote neuroprotection in a rat model of cerebral ischemia. To accomplish this goal, we transfected NSCs with a lentivirus carrying the LIF gene to stably overexpress LIF. The LIF-NSCs reduced caspase 3 activation under conditions of oxygen-glucose deprivation in vitro.Transient cerebral ischemia was induced in rats by 2 h of middle cerebral artery occlusion(MCAo), and LIF-NSCs were intravenously injected at 6 h post-ischemia. LIF-NSC treatment reduced the infarction volume and improved neurological recovery. Moreover, LIF-NSCs improved glial cell regeneration and ameliorated white matter injuryin the MCAo rats. The NSCs acted as carriers and increased the expression of LIF in the lesions to protect against cerebral infarction, suggesting that LIF-NSCs could be a potential treatment for cerebral infarction.
基金supported by the National Natural Science Foundation of China(grant No.21776217 and 21978214).
文摘Mixed matrix membranes(MMMs)with the performance between the matrix and the filler is a promising strategy for membranes with excellent gas permeability-selectivity.In this study,the hollow polydimethylsiloxane nanoparticles were synthesized and then incorporated with the poly(oxide ethylene)monomer and tri-functional cross-linker to form mixed matrix membranes by in situ poly-merization.The hollow nanoparticles formed the independent closed nanocavities in membranes,which enhanced the gas permeability contributed by both the improved diffusivity and solubility.At high loading,the hollow polydimethylsiloxane nanoparticle was converted into the continuous phase with the cross-linked poly(oxide ethylene)as the dispersed phase.Gases preferred to permeate through the connected cluster of hollow polydimethylsiloxane nanoparticles,finally leading to ultrahigh gas per-meabilities far going beyond the instinct values of polydimethylsiloxane and the cross-linked poly(oxide ethylene).The optimized membrane with 34 wt%hollow nanoparticles loadings exhibited ultrahigh permeabilities with the values of 44186 Barrer for CO_(2) and 11506 Barrer for O_(2),accompanied with a CO_(2)/N_(2) selectivity of 9.9 and an O_(2)/N_(2) selectivity of 2.6,which exceeded the 2008 Robeson upper bound for O_(2)/N_(2) and located at the 2008 Robeson upper bound for CO_(2)/N_(2).
文摘Speckle noise in synthetic-aperture radar (SAR) images severely hindersremote sensing applications;therefore, the appropriate removal ofspeckle noise is crucial. This paper elaborates on the multilayerperceptron (MLP) neural-network model for SAR image despeckling byusing a time series of SAR images. Unlike other filtering methods thatuse only a single radar intensity image to derive their parameters andfilter that single image, this method can be trained using archivedimages over an area of interest to self-learn the intensitycharacteristics of image patches and then adaptively determine theweights and thresholds by using a neural network for imagedespeckling. Several hidden layers are designed for feedforwardnetwork training, and back-propagation stochastic gradient descent isadopted to reduce the error between the target output and neuralnetwork output. The parameters in the network are automaticallyupdated in the training process. The greatest advantage of MLP is thatonce the despeckling parameters are determined, they can be used toprocess not only new images in the same area but also images incompletely different locations. Tests with images from TerraSAR-X inselected areas indicated that MLP shows satisfactory performance withrespect to noise reduction and edge preservation. The overall imagequality obtained using MLP was markedly higher than that obtainedusing numerous other filters. In comparison with other recentlydeveloped filters, this method yields a slightly higher image quality,and it demonstrates the powerful capabilities of computer learningusing SAR images, which indicate the promising prospect of applyingMLP to SAR image despeckling.
基金financially supported by the National Natural Science Foundation of China(Nos.21706189,21978217,21676201)Science and Technology Plans of Tianjin(18JCQNJC06800,18PTSYJC00190,17PTSYJC00050)+2 种基金Tianjin Natural Science Foundation(No.18JCYBJC89400)Tianjin Municipal Education Commission Scientific Research Project(2017KJ074)University Students?innovation and entrepreneurship training program(202010058050,202110058127)。
文摘One type of new light-responsive hierarchical metal organic framework(MOF) has been successfully prepared using Co(NO_(3))_(3)·6H_(2)O as the metal salt and 4,4’-azobenzenedicarboxylic acid as the ligand by microwave method for the first time. It is found that MOF [Co(Az DC)] exhibits a light-responsive characteristic to SO_(2)adsorption due to the presence of azo group from the ligand. The light-responsive hierarchical MOFs are incorporated into Matrimid■ 5218(PI) matrix to prepare mixed matrix membranes(MMMs) for gas separation application. The morphology, crystallinity, chain mobility and thermal stability of MMMs are explored. Results show that Co(Az DC) may elevate both the CO_(2)(SO_(2)) permeability and CO_(2)(SO_(2))/N_(2)selectivity of the MMMs. In particular,the Co(Az DC) doped MMMs exhibit the significantly improved CO_(2)(SO_(2))/N_(2)selectivity from 33(123) for PI control membrane to 78(420) for MMMs, overcoming the 2008 Robeson upper bound for CO_(2)/N_(2)system. Sizesieving effect of Co(Az DC) with pore size 0.35 nm enhances the selectivity, while the –N=N– group from Co(Az DC) shows affinity to CO_(2)molecular rather than N_(2), also elevating selectivity of MMMs. In brief, enhanced selectivity of high-performance membrane is attributed to incorporation of Co(Az DC) particles, which displays synergistic effects both in size-sieving and CO_(2)-philic interaction for CO_(2)/N_(2)separation. Smart highly selective interface is constructed in MMMs by switching the configuration of MOFs from cis to trans. The SO_(2)permeability and SO_(2)/N_(2)selectivity of MMMs are investigated under both visible light and ultraviolet light states, and the SO_(2)/N_(2)separation performance under visible light is notably improved in comparison with that under ultraviolet light state.