Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and t...Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.展开更多
Organometal halide perovskite based solar cells have emerged as one of the most promising candidates for low-cost and high-efficiency solar cell technologies. Here a Vapor Transfer Method (VTM) is used to fabricate ...Organometal halide perovskite based solar cells have emerged as one of the most promising candidates for low-cost and high-efficiency solar cell technologies. Here a Vapor Transfer Method (VTM) is used to fabricate high quality perovskite thin films in a balanced vacuum capsule. By adjusting the reaction tem- perature, CH_3NHl_3 saturated vapor which then reacts with Pbl_2 films can be controlled and the formation process of CH_3NH_3Pbl_3 perovskite films can be further influenced. Prepared perovskite films which ex- hibit pure phase, smooth surface and high crystallinity are assembled into planar heterojunction inverted solar cells. The whole fabrication process of solar cell devices is organic solution free. Finally, the cham- pion cell achieved power conversion efficiency (PCE) of 13.08% with negligible current-voltage hysteresis under fully open-air conditions. The photovoltaic performance could be further enhanced by optimizing perovskite composition and the device structure.展开更多
The device performance of CdS/CdTe solar cells largely depends on not only the back ohmic contact, but also the conformality of Cd S window layer coating. In order to reduce the light absorption loss in Cd S, the Cd S...The device performance of CdS/CdTe solar cells largely depends on not only the back ohmic contact, but also the conformality of Cd S window layer coating. In order to reduce the light absorption loss in Cd S, the Cd S thickness is usually less than 100 nm. However, pinholes in Cd S and non-conformal coverage of Cd S on transparent conducting oxide layer will cause shunting thus leading to device performance degradation and failure. In this paper, low-temperature and low-cost fabrication methods, i.e., chemical bath deposition and electrochemical deposition, were used to deposit Cd S and Cd Te, respectively. It was found that the yield of device was around 20 % due to shunting. In order to alleviate this problem, a compact layer of TiO2 was inserted between the fluorine-doped tin oxide and Cd S as a buffer layer. The thickness effect of TiO2 was studied and showed that devices with thin(20 nm thickness) TiO2 performed better than the counterparts with thick layers. It was discovered that device yield improved to 80 % and stability in air substantially improved with TiO2 layer.展开更多
Polymer semiconductors with highly crystalline forms,such as crystalline nanowires and fibers,are critical for charge carrier transport in organic field-effect transistors(OFET).However,the highly crystalline form usu...Polymer semiconductors with highly crystalline forms,such as crystalline nanowires and fibers,are critical for charge carrier transport in organic field-effect transistors(OFET).However,the highly crystalline form usually requires high-quality molecular orderliness,which still remains a great challenge,especially in single fibers of extremely high-molecular-weight semiconducting polymers.In this study,we present an anodic aluminum oxide(AAO)template-assisted method to fabricate highly crystalline N-alkyl diketopyrrolopyrrole dithienylthieno[3,2-b]thiophene(DPP-DTT)single fibers.Grazing-incidence X-ray diffraction and selected area electron diffraction show obvious diffraction patterns for single-crystal-like characteristics,indicating the highly ordered molecular chains and highly crystalline structures of the single DPP-DTT fibers.OFET based on the single-crystal-like DPP-DTT fiber exhibits the highest charge carrier mobility of up to 14.2 cm^(2)V^(−1)s^(-1)and an average mobility of approximately 7.8 cm^(2)V^(−1)s^(-1),which is significantly improved compared with DPP-DTT thin film-based devices.Besides,the fiber-based OFET also exhibit a high light responsivity of 4.0.103 A W^(−1).This work demonstrates a facile and effective method for fabricating single-crystal-like fibers of high-molecular-weight polymer semiconductors and corresponding high-performance OFET devices.Furthermore,it also expands application of AAO template method for achieving crystalline semiconducting polymer fibers and provide a new perspective for the study on polymer crystallization.展开更多
基金King Abdulaziz City for Science and Technology (KACST) for the fellowshipfunding from the European Union’s Horizon 2020 research and innovation program GRAPHENE Flagship Core 3 under agreement No.: 881603+2 种基金funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sk?odowska-Curie grant agreement No. 945363funding from the Shanghai Pujiang Program (22PJ1401200)the National Natural Science Foundation of China (No. 52302229)
文摘Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.
文摘Organometal halide perovskite based solar cells have emerged as one of the most promising candidates for low-cost and high-efficiency solar cell technologies. Here a Vapor Transfer Method (VTM) is used to fabricate high quality perovskite thin films in a balanced vacuum capsule. By adjusting the reaction tem- perature, CH_3NHl_3 saturated vapor which then reacts with Pbl_2 films can be controlled and the formation process of CH_3NH_3Pbl_3 perovskite films can be further influenced. Prepared perovskite films which ex- hibit pure phase, smooth surface and high crystallinity are assembled into planar heterojunction inverted solar cells. The whole fabrication process of solar cell devices is organic solution free. Finally, the cham- pion cell achieved power conversion efficiency (PCE) of 13.08% with negligible current-voltage hysteresis under fully open-air conditions. The photovoltaic performance could be further enhanced by optimizing perovskite composition and the device structure.
基金supported by Hong Kong Innovation Technology Commission project(ITS/117/13)Hong Kong Research Grants Council project(612113)+1 种基金Fundamental Research Project of Shenzhen Science & Technology Foundation(JCYJ20130402164725025)the International Collaboration Project of Shenzhen Science & Technology Foundation(GJHZ20130417170946221)
文摘The device performance of CdS/CdTe solar cells largely depends on not only the back ohmic contact, but also the conformality of Cd S window layer coating. In order to reduce the light absorption loss in Cd S, the Cd S thickness is usually less than 100 nm. However, pinholes in Cd S and non-conformal coverage of Cd S on transparent conducting oxide layer will cause shunting thus leading to device performance degradation and failure. In this paper, low-temperature and low-cost fabrication methods, i.e., chemical bath deposition and electrochemical deposition, were used to deposit Cd S and Cd Te, respectively. It was found that the yield of device was around 20 % due to shunting. In order to alleviate this problem, a compact layer of TiO2 was inserted between the fluorine-doped tin oxide and Cd S as a buffer layer. The thickness effect of TiO2 was studied and showed that devices with thin(20 nm thickness) TiO2 performed better than the counterparts with thick layers. It was discovered that device yield improved to 80 % and stability in air substantially improved with TiO2 layer.
基金the National Natural Science Foundation of China(Grant No.61890940,51903051)the Natural Science Foundation of Shanghai(Grant 22ZR1407800).
文摘Polymer semiconductors with highly crystalline forms,such as crystalline nanowires and fibers,are critical for charge carrier transport in organic field-effect transistors(OFET).However,the highly crystalline form usually requires high-quality molecular orderliness,which still remains a great challenge,especially in single fibers of extremely high-molecular-weight semiconducting polymers.In this study,we present an anodic aluminum oxide(AAO)template-assisted method to fabricate highly crystalline N-alkyl diketopyrrolopyrrole dithienylthieno[3,2-b]thiophene(DPP-DTT)single fibers.Grazing-incidence X-ray diffraction and selected area electron diffraction show obvious diffraction patterns for single-crystal-like characteristics,indicating the highly ordered molecular chains and highly crystalline structures of the single DPP-DTT fibers.OFET based on the single-crystal-like DPP-DTT fiber exhibits the highest charge carrier mobility of up to 14.2 cm^(2)V^(−1)s^(-1)and an average mobility of approximately 7.8 cm^(2)V^(−1)s^(-1),which is significantly improved compared with DPP-DTT thin film-based devices.Besides,the fiber-based OFET also exhibit a high light responsivity of 4.0.103 A W^(−1).This work demonstrates a facile and effective method for fabricating single-crystal-like fibers of high-molecular-weight polymer semiconductors and corresponding high-performance OFET devices.Furthermore,it also expands application of AAO template method for achieving crystalline semiconducting polymer fibers and provide a new perspective for the study on polymer crystallization.