To reduce current harmonics caused by switching frequency,T-type grid-connected inverter topology with LCL filter is adopted.In view of the disadvantages of the slow response speed of the traditional current control a...To reduce current harmonics caused by switching frequency,T-type grid-connected inverter topology with LCL filter is adopted.In view of the disadvantages of the slow response speed of the traditional current control and the failure to eliminate the influence of the LCL filter on the grid-connected current by using current PI control alone,a current double closed loop PI current tracking control is proposed.Through the theoretical analysis of the grid-connected inverter control principle,the grid-connected inverter control model is designed,and the transfer functionmodel of each control link is deduced,and the current loop PI regulator is designed at last.The simulation results show that the control strategy is feasible.展开更多
To adress the problems of insufficient consideration of charging pile resource limitations,discrete-time scheduling methods that do not meet the actual demand and insufficient descriptions of peak-shaving response cap...To adress the problems of insufficient consideration of charging pile resource limitations,discrete-time scheduling methods that do not meet the actual demand and insufficient descriptions of peak-shaving response capability in current electric vehicle(EV)opti-mization scheduling,edge intelligence-oriented electric vehicle optimization scheduling and charging station peak-shaving response capability assessment methods are proposed on the basis of the consideration of electric vehicle and charging pile matching.First,an edge-intelligence-oriented electric vehicle regulation frame for charging stations is proposed.Second,continuous time variables are used to represent the available charging periods,establish the charging station controllable EV load model and the future available charging pile mathematical model,and establish the EV and charging pile matching matrix and constraints.Then,with the goal of maximizing the user charging demand and reducing the charging cost,the charging station EV optimal scheduling model is established,and the EV peak response capacity assessment model is further established by considering the EV load shifting constraints under different peak response capacities.Finally,a typical scenario of a real charging station is taken as an example for the analysis of optimal EV scheduling and peak shaving response capacity,and the proposed method is compared with the traditional method to verify the effectiveness and practicality of the proposed method.展开更多
基金Supported by Science and Technology Projects of State Grid Corporation ofChina(J2022019).
文摘To reduce current harmonics caused by switching frequency,T-type grid-connected inverter topology with LCL filter is adopted.In view of the disadvantages of the slow response speed of the traditional current control and the failure to eliminate the influence of the LCL filter on the grid-connected current by using current PI control alone,a current double closed loop PI current tracking control is proposed.Through the theoretical analysis of the grid-connected inverter control principle,the grid-connected inverter control model is designed,and the transfer functionmodel of each control link is deduced,and the current loop PI regulator is designed at last.The simulation results show that the control strategy is feasible.
基金supported by the Science and Technology Project of State Grid Jiangsu Electric Power Company(J2023114).
文摘To adress the problems of insufficient consideration of charging pile resource limitations,discrete-time scheduling methods that do not meet the actual demand and insufficient descriptions of peak-shaving response capability in current electric vehicle(EV)opti-mization scheduling,edge intelligence-oriented electric vehicle optimization scheduling and charging station peak-shaving response capability assessment methods are proposed on the basis of the consideration of electric vehicle and charging pile matching.First,an edge-intelligence-oriented electric vehicle regulation frame for charging stations is proposed.Second,continuous time variables are used to represent the available charging periods,establish the charging station controllable EV load model and the future available charging pile mathematical model,and establish the EV and charging pile matching matrix and constraints.Then,with the goal of maximizing the user charging demand and reducing the charging cost,the charging station EV optimal scheduling model is established,and the EV peak response capacity assessment model is further established by considering the EV load shifting constraints under different peak response capacities.Finally,a typical scenario of a real charging station is taken as an example for the analysis of optimal EV scheduling and peak shaving response capacity,and the proposed method is compared with the traditional method to verify the effectiveness and practicality of the proposed method.