Originating but free from chromosomal DNA,extrachromosomal circular DNAs(eccDNAs)are organized in circular form and have long been found in unicellular and multicellular eukaryotes.Their biogenesis and function are po...Originating but free from chromosomal DNA,extrachromosomal circular DNAs(eccDNAs)are organized in circular form and have long been found in unicellular and multicellular eukaryotes.Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA,for which few detection methods are available.Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation,evolution,and drug resistance as well as aging,genomic diversity,and other biological processes,bringing it back to the research hotspot.Several mechanisms of eccDNA formation have been proposed,including the breakage-fusion-bridge(BFB)and translocation-deletion-amplification models.Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health.The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites.The present review summarized the research history,biogenesis,and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction.We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection,prognosis,and treatment of gynecologic tumors.This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.展开更多
In this research we investigate the association between local state capacity(LSC)and effective tax burdens(ETBs)on industrial firms within counties between 1998 and 2013.The LSC measures a state's capacity for pol...In this research we investigate the association between local state capacity(LSC)and effective tax burdens(ETBs)on industrial firms within counties between 1998 and 2013.The LSC measures a state's capacity for policy implementation and specifically its ability to acquire low-cost agricultural land for nonagricultural(industrial or commercial)purposes.Based on China's government-led development experience since the 1990s,we draw on two unique household survey datasets to capture LSC at county level.We find robust evidence that greater LSC was associated with much lower ETBs on large industrial firms.This taxation pattern implies local government's primary reliance on larger manufacturing firms,while the ETBs for small-and-medium enterprises are not as prominently addressed.This research highlights that LSC can affect both the amount of revenue a local government can generate and the methods it uses to collect these revenues.展开更多
Peroxisomal disorders(PDs)are a heterogenous group of diseases caused by defects in peroxisome biogenesis or functions.Xlinked adrenoleukodystrophy is the most prevalent form of PDs and results from mutations in the A...Peroxisomal disorders(PDs)are a heterogenous group of diseases caused by defects in peroxisome biogenesis or functions.Xlinked adrenoleukodystrophy is the most prevalent form of PDs and results from mutations in the ABCD1 gene,which encodes a transporter mediating the uptake of very long-chain fatty acids(VLCFAs).The curative approaches for PDs are very limited.Here,we investigated whether cholesterol accumulation in the lysosomes is a biochemical feature shared by a broad spectrum of PDs.We individually knocked down fifteen PD-associated genes in cultured cells and found ten induced cholesterol accumulation in the lysosome.2-Hydroxypropyl-β-cyclodextrin(HPCD)effectively alleviated the cholesterol accumulation phenotype in PD-mimicking cells through reducing intracellular cholesterol content as well as promoting cholesterol redistribution to other cellular membranes.In ABCD1 knockdown cells,HPCD treatment lowered reactive oxygen species and VLCFA to normal levels.In Abcd1 knockout mice,HPCD injections reduced cholesterol and VLCFA sequestration in the brain and adrenal cortex.The plasma levels of adrenocortical hormones were increased and the behavioral abnormalities were greatly ameliorated upon HPCD administration.Together,our results suggest that defective cholesterol transport underlies most,if not all,PDs,and that HPCD can serve as a novel and effective strategy for the treatment of PDs.展开更多
Sterol-regulatory element binding proteins(SREBPs)are the key transcriptional regulators of lipid metabolism.The activation of SREBP requires translocation of the SREBP precursor from the endoplasmic reticulum to the ...Sterol-regulatory element binding proteins(SREBPs)are the key transcriptional regulators of lipid metabolism.The activation of SREBP requires translocation of the SREBP precursor from the endoplasmic reticulum to the Golgi,where it is sequentially cleaved by site-1 protease(S1P)and site-2 protease and releases a nuclear form to modulate gene expression.To search for new genes regulating cholesterol metabolism,we perform a genome-wide CRISPR/Cas9 knockout screen and find that partner of site-1 protease(POSH),encoded by C120RF49,is critically involved in the SREBP signaling.Ablation of POSH decreases the generation of nuclear SREBP and reduces the expression of SREBP target genes.POSH binds S1P,which is synthesized as an inactive protease(form A)and becomes fully mature via a two-step autocatalytic process involving forms B/B and C/C.POSH promotes the generation of the functional S1P-C/C from S1P-B/B(canonical cleavage)and,notably,from S1P-A directly(non-canonical cleavage)as well.This POSH-mediated S1P activation is also essential for the cleavages of other S1P substrates including ATF6,CREB3 family members and the a/p-subunit precursor of N-acetylglucosamine-1-phospho-transferase.Together,we demonstrate that POSH is a cofactor controlling S1P maturation and plays important roles in lipid homeostasis,unfolded protein response,lipoprotein metabolism and lysosome biogenesis.展开更多
Ciliates are one of the oldest living eukaryotic unicellular organisms, widely distributed in the waters around the world. As a typical marine oligotrich ciliate, Strombidium sulcatum plays an important role in marine...Ciliates are one of the oldest living eukaryotic unicellular organisms, widely distributed in the waters around the world. As a typical marine oligotrich ciliate, Strombidium sulcatum plays an important role in marine food webs and energy flow. Here we report the first deep se- quencing and analyses of RNA-Seq data from Strombidium sulcatum. We generated 42,640 unigenes with an N50 of 1,451 bp after de novo assembly and removing rRNA, mitochondrial and bacteria contaminants. We employed SPOCS to detect orthologs from S. sulcatum and 17 other ciliates, and then carried out the phyloge- nomic reconstruction using 127 single copy orthologs. In phylogenomic analyses, concatenated trees have similar topological structures with concordance tree on the class level. Together with phylogenetic networks analysis, it aroused more doubts about the placement of Protocruzia, Mesodinium and Myrionecta. While epi- plasmic proteins are known to be related to morphological characteristics, we found the potential relationship between gene expression of epiplasmic proteins and morphological characteristics. This work supports the use of high throughput approaches for phylogenomic analysis as well as correlation analysis between expression level of target genes and morphological characteristics.展开更多
Dengue virus(DENV)infection is a worldwide public health threat.To date,the knowledge about the pathogenesis and progression of DENV infection is still limited.Combining global profiling based on proteomic analysis to...Dengue virus(DENV)infection is a worldwide public health threat.To date,the knowledge about the pathogenesis and progression of DENV infection is still limited.Combining global profiling based on proteomic analysis together with functional verification analysis is a powerful strategy to investigate the interplay between the virus and host cells.In the present study,quantitative proteomics has been applied to evaluate host responses(as indicated by altered proteins and modifications)in human cells(using K562 cell line)upon DENV-2 infection,as DENV-2 spreads most widely among all DENV serotypes.Comparative analysis was performed to define differentially expressed proteins in the infected cells compared to the mock-control,and it revealed critical pathogen-induced changes covering a broad spectrum of host cellular compartments and processes.We also discovered more dramatic changes(>20%,160 regulated phosphoproteins)in protein phosphorylation compared to protein expression(14%,321 regulated proteins).Most of these proteins/phosphoproteins were involved in transcription regulation,RNA splicing and processing,immune system,cellular response to stimulus,and macromolecule biosynthesis.Western blot analysis was also performed to confirm the proteomic data.Potential roles of these altered proteins were discussed.The present study provides valuable large-scale protein-related information for elucidating the functional emphasis of host cell proteins and their post-translational modifications in virus infection,and also provides insight and protein evidence for understanding the general pathogenesis and pathology of DENV.展开更多
DNA replication elongation is tightly controlled by histone-modifying enzymes.Our previous studies showed that the histone methytransferase TXRl(Tetrahymena Trithorax related protein 1) specifically catalyzes H3K27 mo...DNA replication elongation is tightly controlled by histone-modifying enzymes.Our previous studies showed that the histone methytransferase TXRl(Tetrahymena Trithorax related protein 1) specifically catalyzes H3K27 monomethylation and affects DNA replication elongation in Tetrahymena thermophila.In this study,we investigated whether TXRl has a substrate preference to the canonical H3 over the replacement variant H3.3.We demonstrated by histone mutagenesis that K27 Q mutation in H3.3further aggravated the replication stress phenotype of K27 Q mutation in canonical H3,supporting H3.3 as a physiologically relevant substrate of TXRl.This result is in apparent contrast to the strong preference for canonical H3 recently reported in Arabidopsis homologues ATXR5 and ATXR6,and further corroborates the role of TXRl in DNA replication.展开更多
Dear Editor,Enterovirus 71(EV71)belongs to the genus Enterovirus,family Picornaviridae(Oberste et al.,1999).It was first isolated from patients with central nervous system diseases in California between 1969 and1974(S...Dear Editor,Enterovirus 71(EV71)belongs to the genus Enterovirus,family Picornaviridae(Oberste et al.,1999).It was first isolated from patients with central nervous system diseases in California between 1969 and1974(Schmidt et al.,1974)and has spread worldwide(Solomon et al.,2010).EV71 infection usually causes mild,self-limiting hand,foot,and mouth disease in children.Acute EV71 infection may also cause severe polio-like neurological diseases and significant mortality.展开更多
Epigenetic research focuses on heritable changes beyond the DNA sequence, which has led to a revolution in biologicalstudies and benefits in many other fields. The well-known model ciliate, Tetrahymena thermophila off...Epigenetic research focuses on heritable changes beyond the DNA sequence, which has led to a revolution in biologicalstudies and benefits in many other fields. The well-known model ciliate, Tetrahymena thermophila offers a unique system forepigenetic studies due to its nuclear dimorphism and special mode of sexual reproduction (conjugation), as well as abundantgenomic resources and genetic tools. In this paper, we summarize recent progress made by our research team and collaboratorsin understanding epigenetic mechanisms using Tetrahymena. This includes: (1) providing the first genome-wide basepair-resolution map of DNA N6-methyladenine (6mA) and revealed it as an integral part of the chromatin landscape;(2)dissecting the relative contribution of cis・ and trans- elements to nucleosome distribution by exploring the unique nucleardimorphism of Tetrahymena, (3) demonstrating the epigenetic controls of RNAi-dependent Polycomb repression pathwayson transposable elements, and (4) identifying a new histone monomethyltransferase, TXR1 (Tetrahymena Trithorax 1), thatfacilitates replication elongation through 让s substrate histone H3 lysine 27 monomethylation (H3K27mel).展开更多
Lysine methylation of histones and non-histones plays a pivotal role in diverse cellular processes.The SMYD(SET and MYND domain)family methyltransferases can methylate various histone and non-histone substrates in mam...Lysine methylation of histones and non-histones plays a pivotal role in diverse cellular processes.The SMYD(SET and MYND domain)family methyltransferases can methylate various histone and non-histone substrates in mammalian systems,implicated in HSP90 methylation,myofilament organization,cancer inhibition,and gene transcription regulation.To resolve controversies concerning SMYD's substrates and functions,we studied SMYD1(TTHERM_00578660),the only homologue of SMYD in the unicellular eukaryote Tetrahymena thermophila.We epitope-tagged SMYD1,and analyzed its localization and interactome.We also characterized △SMYD1 cells,focusing on the replication and transcription phenotype.Our results show that:(1)SMYD1 is present in both cytoplasm and transcriptionally active macronucleus and shuttles between cytoplasm and macronucleus,suggesting its potential association with both histone and non-histone substrates;(2)SMYD1 is involved in DNA replication and regulates transcription of metabolism-related genes;(3)HSP90 is a potential substrate for SMYD1 and it may regulate target selection of HSP90,leading to pleiotropic effects in both the cytoplasm and the nucleus.展开更多
基金supported by the National Natural Science Foundation of China [Grant Nos.32170493,32170656]the National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)[Grant No.BYSYSZKF2022005]the Clinical Medicine Plus X-Young Scholars Project,Peking University,the Fundamental Research Funds for the Central Universities (PKU2023LCXQ036)。
文摘Originating but free from chromosomal DNA,extrachromosomal circular DNAs(eccDNAs)are organized in circular form and have long been found in unicellular and multicellular eukaryotes.Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA,for which few detection methods are available.Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation,evolution,and drug resistance as well as aging,genomic diversity,and other biological processes,bringing it back to the research hotspot.Several mechanisms of eccDNA formation have been proposed,including the breakage-fusion-bridge(BFB)and translocation-deletion-amplification models.Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health.The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites.The present review summarized the research history,biogenesis,and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction.We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection,prognosis,and treatment of gynecologic tumors.This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.
基金supported by the National Natural Science Foundation of China(Nos.72121005,72342030,72293565,and 72173025)Innovative Research Groups Project of the National Natural Science Foundation of China(No.72121002)the Ministry of Education of Humanities and Social Science Project of China(No.21YJA790042).
文摘In this research we investigate the association between local state capacity(LSC)and effective tax burdens(ETBs)on industrial firms within counties between 1998 and 2013.The LSC measures a state's capacity for policy implementation and specifically its ability to acquire low-cost agricultural land for nonagricultural(industrial or commercial)purposes.Based on China's government-led development experience since the 1990s,we draw on two unique household survey datasets to capture LSC at county level.We find robust evidence that greater LSC was associated with much lower ETBs on large industrial firms.This taxation pattern implies local government's primary reliance on larger manufacturing firms,while the ETBs for small-and-medium enterprises are not as prominently addressed.This research highlights that LSC can affect both the amount of revenue a local government can generate and the methods it uses to collect these revenues.
基金supported by the China Postdoctoral Science Foundation Grant(2021M692478)the Ministry of Science and Technology of China(2018YFA0800703)+2 种基金the National Natural Science Foundation of China(32293203,31771568)111 Project of Ministry of Education of China(B16036)the support from the Tencent Foundation through the XPLORER PRIZE。
文摘Peroxisomal disorders(PDs)are a heterogenous group of diseases caused by defects in peroxisome biogenesis or functions.Xlinked adrenoleukodystrophy is the most prevalent form of PDs and results from mutations in the ABCD1 gene,which encodes a transporter mediating the uptake of very long-chain fatty acids(VLCFAs).The curative approaches for PDs are very limited.Here,we investigated whether cholesterol accumulation in the lysosomes is a biochemical feature shared by a broad spectrum of PDs.We individually knocked down fifteen PD-associated genes in cultured cells and found ten induced cholesterol accumulation in the lysosome.2-Hydroxypropyl-β-cyclodextrin(HPCD)effectively alleviated the cholesterol accumulation phenotype in PD-mimicking cells through reducing intracellular cholesterol content as well as promoting cholesterol redistribution to other cellular membranes.In ABCD1 knockdown cells,HPCD treatment lowered reactive oxygen species and VLCFA to normal levels.In Abcd1 knockout mice,HPCD injections reduced cholesterol and VLCFA sequestration in the brain and adrenal cortex.The plasma levels of adrenocortical hormones were increased and the behavioral abnormalities were greatly ameliorated upon HPCD administration.Together,our results suggest that defective cholesterol transport underlies most,if not all,PDs,and that HPCD can serve as a novel and effective strategy for the treatment of PDs.
文摘Sterol-regulatory element binding proteins(SREBPs)are the key transcriptional regulators of lipid metabolism.The activation of SREBP requires translocation of the SREBP precursor from the endoplasmic reticulum to the Golgi,where it is sequentially cleaved by site-1 protease(S1P)and site-2 protease and releases a nuclear form to modulate gene expression.To search for new genes regulating cholesterol metabolism,we perform a genome-wide CRISPR/Cas9 knockout screen and find that partner of site-1 protease(POSH),encoded by C120RF49,is critically involved in the SREBP signaling.Ablation of POSH decreases the generation of nuclear SREBP and reduces the expression of SREBP target genes.POSH binds S1P,which is synthesized as an inactive protease(form A)and becomes fully mature via a two-step autocatalytic process involving forms B/B and C/C.POSH promotes the generation of the functional S1P-C/C from S1P-B/B(canonical cleavage)and,notably,from S1P-A directly(non-canonical cleavage)as well.This POSH-mediated S1P activation is also essential for the cleavages of other S1P substrates including ATF6,CREB3 family members and the a/p-subunit precursor of N-acetylglucosamine-1-phospho-transferase.Together,we demonstrate that POSH is a cofactor controlling S1P maturation and plays important roles in lipid homeostasis,unfolded protein response,lipoprotein metabolism and lysosome biogenesis.
基金This work was supported by the Natural Science Foundation of China (Grant Nos. 31430077, 91131013, and 31272285). Many thanks are given to Prof. Weibo Song (Ocean University of China), for his indispensable advice during the preparation of the manuscript.
文摘Ciliates are one of the oldest living eukaryotic unicellular organisms, widely distributed in the waters around the world. As a typical marine oligotrich ciliate, Strombidium sulcatum plays an important role in marine food webs and energy flow. Here we report the first deep se- quencing and analyses of RNA-Seq data from Strombidium sulcatum. We generated 42,640 unigenes with an N50 of 1,451 bp after de novo assembly and removing rRNA, mitochondrial and bacteria contaminants. We employed SPOCS to detect orthologs from S. sulcatum and 17 other ciliates, and then carried out the phyloge- nomic reconstruction using 127 single copy orthologs. In phylogenomic analyses, concatenated trees have similar topological structures with concordance tree on the class level. Together with phylogenetic networks analysis, it aroused more doubts about the placement of Protocruzia, Mesodinium and Myrionecta. While epi- plasmic proteins are known to be related to morphological characteristics, we found the potential relationship between gene expression of epiplasmic proteins and morphological characteristics. This work supports the use of high throughput approaches for phylogenomic analysis as well as correlation analysis between expression level of target genes and morphological characteristics.
基金supported by the National Natural Science Foundation of China (31870827 to X.Zhao, 31670161 to X.Zhou., and 81873964 to Y.Q.)the Hubei Natural Science Foundation (2018CFB603 to X.Zhao)the Fundamental Research Funds for the Central Universities (2042018kf0247 to X.Zhao)
文摘Dengue virus(DENV)infection is a worldwide public health threat.To date,the knowledge about the pathogenesis and progression of DENV infection is still limited.Combining global profiling based on proteomic analysis together with functional verification analysis is a powerful strategy to investigate the interplay between the virus and host cells.In the present study,quantitative proteomics has been applied to evaluate host responses(as indicated by altered proteins and modifications)in human cells(using K562 cell line)upon DENV-2 infection,as DENV-2 spreads most widely among all DENV serotypes.Comparative analysis was performed to define differentially expressed proteins in the infected cells compared to the mock-control,and it revealed critical pathogen-induced changes covering a broad spectrum of host cellular compartments and processes.We also discovered more dramatic changes(>20%,160 regulated phosphoproteins)in protein phosphorylation compared to protein expression(14%,321 regulated proteins).Most of these proteins/phosphoproteins were involved in transcription regulation,RNA splicing and processing,immune system,cellular response to stimulus,and macromolecule biosynthesis.Western blot analysis was also performed to confirm the proteomic data.Potential roles of these altered proteins were discussed.The present study provides valuable large-scale protein-related information for elucidating the functional emphasis of host cell proteins and their post-translational modifications in virus infection,and also provides insight and protein evidence for understanding the general pathogenesis and pathology of DENV.
基金supported by the Natural Science Foundation of China (31470064,31522051 to Shan Gao)the National Institutes of Health(R01GM087343 to Yifan Liu)+1 种基金AoShan Talents Program supported by Qingdao National Laboratory for Marine Science and Technology(2015ASTP)China and a research grant by Qingdao government(15-12-1-1-jch)
文摘DNA replication elongation is tightly controlled by histone-modifying enzymes.Our previous studies showed that the histone methytransferase TXRl(Tetrahymena Trithorax related protein 1) specifically catalyzes H3K27 monomethylation and affects DNA replication elongation in Tetrahymena thermophila.In this study,we investigated whether TXRl has a substrate preference to the canonical H3 over the replacement variant H3.3.We demonstrated by histone mutagenesis that K27 Q mutation in H3.3further aggravated the replication stress phenotype of K27 Q mutation in canonical H3,supporting H3.3 as a physiologically relevant substrate of TXRl.This result is in apparent contrast to the strong preference for canonical H3 recently reported in Arabidopsis homologues ATXR5 and ATXR6,and further corroborates the role of TXRl in DNA replication.
基金supported by the National Natural Science Foundation of China grants(No.31870827 to X Zhao,No.31970169 to X Zhou)the National Key Research and Development Program of China grant(No.2019YFA0802701 to X Zhao)+1 种基金the Zhejiang Sci-Tech University Research Startup grants(No.19042401-Y to M Miao)the Zhejiang Sci-Tech University Youth Innovation grants(No.20042140-Y to M Miao)。
文摘Dear Editor,Enterovirus 71(EV71)belongs to the genus Enterovirus,family Picornaviridae(Oberste et al.,1999).It was first isolated from patients with central nervous system diseases in California between 1969 and1974(Schmidt et al.,1974)and has spread worldwide(Solomon et al.,2010).EV71 infection usually causes mild,self-limiting hand,foot,and mouth disease in children.Acute EV71 infection may also cause severe polio-like neurological diseases and significant mortality.
基金supported by Natural Science Foundation ofShandong Province (JQ201706)The Marine S&T Fund of ShandongProvince for Pilot National Laboratory for Marine Science and Technology(Qingdao) (2018SDKJ0406-2)+1 种基金Fundamental Research Fundsfor the Central Universities (201841005)the Blue Life BreakthroughProgram of LMBB of Qingdao National Laboratory for MarineScience and Technology (MS2018N004).
文摘Epigenetic research focuses on heritable changes beyond the DNA sequence, which has led to a revolution in biologicalstudies and benefits in many other fields. The well-known model ciliate, Tetrahymena thermophila offers a unique system forepigenetic studies due to its nuclear dimorphism and special mode of sexual reproduction (conjugation), as well as abundantgenomic resources and genetic tools. In this paper, we summarize recent progress made by our research team and collaboratorsin understanding epigenetic mechanisms using Tetrahymena. This includes: (1) providing the first genome-wide basepair-resolution map of DNA N6-methyladenine (6mA) and revealed it as an integral part of the chromatin landscape;(2)dissecting the relative contribution of cis・ and trans- elements to nucleosome distribution by exploring the unique nucleardimorphism of Tetrahymena, (3) demonstrating the epigenetic controls of RNAi-dependent Polycomb repression pathwayson transposable elements, and (4) identifying a new histone monomethyltransferase, TXR1 (Tetrahymena Trithorax 1), thatfacilitates replication elongation through 让s substrate histone H3 lysine 27 monomethylation (H3K27mel).
基金supported by the Natural Science Foundation of Shandong Province(JQ201706 to SG)Fundamental Research Funds for the Central Universities(201841013 to SG)+1 种基金National Science Foundation[MCB 1411565 to YL]National Institutes of Health Foundation[R01 GM087343 to YL].
文摘Lysine methylation of histones and non-histones plays a pivotal role in diverse cellular processes.The SMYD(SET and MYND domain)family methyltransferases can methylate various histone and non-histone substrates in mammalian systems,implicated in HSP90 methylation,myofilament organization,cancer inhibition,and gene transcription regulation.To resolve controversies concerning SMYD's substrates and functions,we studied SMYD1(TTHERM_00578660),the only homologue of SMYD in the unicellular eukaryote Tetrahymena thermophila.We epitope-tagged SMYD1,and analyzed its localization and interactome.We also characterized △SMYD1 cells,focusing on the replication and transcription phenotype.Our results show that:(1)SMYD1 is present in both cytoplasm and transcriptionally active macronucleus and shuttles between cytoplasm and macronucleus,suggesting its potential association with both histone and non-histone substrates;(2)SMYD1 is involved in DNA replication and regulates transcription of metabolism-related genes;(3)HSP90 is a potential substrate for SMYD1 and it may regulate target selection of HSP90,leading to pleiotropic effects in both the cytoplasm and the nucleus.