As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting t...As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting the mechanical strains and alleviating phase degradation upon cycling.Hereinafter,we propose a strategy using a zeolitic imidazolate framework(ZIF)as the self-sacrificing template to directionally prepare a series of LiNi_(0.1)Co_(0.9)O_(2)(LNCO)with tailorable electrochemical properties.The rational selection of sintering temperature imparts the superiority of the resultant products in lithium storage,during which the sample prepared at 700℃(LNCO-700)outperforms its counterparts in cyclability(156.8 mA h g^(-1)at 1 C for 200 cycles in half cells,1 C=275 mA g^(-1))and rate capability due to the expedited ion/electron transport and the strengthen mechanical robustness.The feasibility of proper Ni doping is also divulged by half/full cell tests and theoretical study,during which LNCO-700(167 mA h g^(-1)at 1 C for 100 cycles in full cells)surpasses LCO-700 in battery performance due to the mitigated phase deterioration,stabilized layered structu re,ameliorated electro nic co nductivity,a nd exalted lithium sto rage activity.This work systematically unveils tailorable electrochemical behaviors of LNCO to better direct their practical application.展开更多
Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion...Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality.展开更多
LED driving power is a necessary product for LED lighting;the behaviors of pursuing low-cost of some small and medium- sized enterprise producers in China directly affect the quality of LED power. Therefore, it is nec...LED driving power is a necessary product for LED lighting;the behaviors of pursuing low-cost of some small and medium- sized enterprise producers in China directly affect the quality of LED power. Therefore, it is necessary to detect the reliability of the LED driving power. There are 4 main factors for the over-burning of the LED driving power: lightning oscillation frequency, voltage mutation frequency, switch motion frequency and static discharge frequency. For the above problems, this paper raises the LED driving power online detection system, including: surge voltage input module, main control module, pulse width modulation module, power module, thyristor control module, current transformer, amplifier, RMSDC conversion module, A/D conversion module, display module, main control module connecting to surge voltage input module. The main operating principle is that the main control module connects the pulse width modulation module, which connects the thyristor control pole of the thyristor control module, the first anode thereof connects the power module;the primary side of current transformer connects the second anode of the thyristor control module through two wire switches, and the secondary side thereof connects the amplifier, which connects the RMS-DC conversion module;RMS-DC conversion module connects the A/D conversion module, which connects the main control module;the main control module also connects the display module. In addition, the project also provides the detection functions of LED output current, voltage digital display and different loads.展开更多
Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon s...Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials.展开更多
Solving the problems of low electrical conductivity and poor cycling durability in transition metal oxidesbased anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs)has already turned into an u...Solving the problems of low electrical conductivity and poor cycling durability in transition metal oxidesbased anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs)has already turned into an urgent requirement.In this paper,we successfully synthesized Co_(2)VO_(4)/Co compounds with Co-VMOF(metal-organic framework)as a sacrificial template and investigated their electrochemical mechanism in order to improve the electrochemical properties of LIBs and SIBs.The optimized heaping configuration and the existence of metallic Co catalyzed the formation of radical ions,thereby facilitating higher conductivity,shortening Li+and Na+transport paths,and providing more active sites.Co_(2)VO_(4)/Co constructed with 2-methylimidazole as a ligand showed a discharge capacity of 1605.1 mA h g^(-1)after 300 cycles at 0.1 A g^(-1)in LIB and 677.2 mA h g^(-1)in SIB.Density functional theory(DFT)calculation emphasizes the crucial role of Co_(2)VO_(4)/Co in enhancing electrode conductivity,decreasing the migratory energy barrier,and thereby strengthening electrochemical properties.This heterostructure building technique may pave the way for the development of high-performance LIBs and SIBs.Furthermore,the problem of the low first-loop coulombic efficiency faced by transition metal oxides is improved.展开更多
LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechani...LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechanism involving substantial structural rearrangements,resulting in unsatisfactory rate performance.Carbon coating,cation doping,and morphological control have been widely employed to reconcile these issues.Inspired by these,we propose a synthetic route with metal–organic frameworks(MOFs)as self-sacrificial templates to simultaneously realize shape modulation,Mn doping,and N-doped carbon coating for enhanced electrochemical performances.The as-synthesized Li MnxFe1–xPO4/C(x=0,0.25,and0.5)deliver tunable electrochemical behaviors induced by the MOF templates,among which LiMn_(0.25)Fe_(0.75)PO_(4)/C outperforms its counterparts in cyclability(164.7 mA h g^(-1)after 200 cycles at 0.5 C)and rate capability(116.3 mA h g^(-1)at 10 C).Meanwhile,the ex-situ XRD reveals a dominant single-phase solid solution mechanism of LiMn_(0.25)Fe_(0.75)PO_(4)/C during delithiation,contrary to the pristine LiFePO_(4),without major structural reconstruction,which helps to explain the superior rate performance.Furthermore,the density functional theory(DFT)calculations verify the effects of Mn doping and embody the superiority of LiMn_(0.25)Fe_(0.75)PO_(4)/C as a LIB cathode,which well supports the experimental observations.This work provides insightful guidance for the design of tunable MOF-derived mixed transitionmetal systems for advanced LIBs.展开更多
Rational manipulation of multicomponent materials into a sophisticated architecture is a prerequisite for developing lithium‐ion batteries.However,mechanical diffusion‐induced strain accumulation leads to sluggish d...Rational manipulation of multicomponent materials into a sophisticated architecture is a prerequisite for developing lithium‐ion batteries.However,mechanical diffusion‐induced strain accumulation leads to sluggish diffusion kinetics and anomalous structure instability,further resulting in inferior long‐term cyclability and rate performance.Herein,the von Mises stress distribution on open microcages composed of secondary nanoparticles(OCNs)is mechanically investigated by finite element simulation,which elucidates the pronounced stress‐release effect on OCNs architecture.Afterward,a facile metal–organic framework‐derived methodology is proposed for constructing multihierarchical carbon‐encapsulated oxygen vacancy‐enriched MnO/Ni OCNs(OV‐MnO/Ni OCNs).Due to structural and compositional integration,the OV‐MnO/Ni OCNs achieve extraordinary lithium storage performance with excellent reversible capacity(1905.1 mAh g^(−1) at 0.2 A g^(−1)),ultrahigh cycling stability(1653.5 mAh g^(−1) at 2 A g^(−1) up to 600 cycles),and considerable rate capability(463.3 mAh g^(−1) even at 10 A g^(−1)).The primary lithium storage mechanisms are further systematically determined by experimental and theoretical investigations.The enriched oxygen vacancies,metallic Ni configuration,and N‐doped carbonaceous matrix provide more active sites,construct omnidirectional diffusion pathways,suppress volume expansion,and boost electronic conductivity,thus yielding an exceptional diffusivity coefficient and expedited electrochemical kinetics.This study offers profound insights for the elaborate design of multicompositional electrodes into a mechanical stress‐release structure toward advanced energy storage application and development.展开更多
Manganese fluoride(MnF2)is a high-performance lithium-ion battery anode material with an excellent structural stability,low synthesis cost,and better manufacturing convenience.However,its low theoretical capacity(577 ...Manganese fluoride(MnF2)is a high-performance lithium-ion battery anode material with an excellent structural stability,low synthesis cost,and better manufacturing convenience.However,its low theoretical capacity(577 mAh g^(-1)),weak conductivity of fluoride,and poor recyclability limit its practical application.Fortunately,oxygen vacancies(Ov)and heteroatomic doping are among the most promising strategies to modulate the inherent reduced electronic conductivity and kinetic response of electrode materials in order to boost their lithium storage capacity.Herein,self-templating,self-optimizing,and self-supporting metal-organic framework template approach with the introduction of oxygen vacancies by substitution of exogenous heteroatoms is proposed,where triple heteroatom-doped(N,O,and F)carbon-encapsulated MOF-derived manganese fluoride(Ov-ZMF@NOFs)microstructures are designed.Interestingly,the exogenously introduced triple heteroatomic carbon matrix forms a fluffy three-dimensional mechanical structure,interlaced conducting networks,efficient conducting pathways,and intense electrochemical dynamics at the periphery of the manganese fluoride nanoparticles.Benefiting from the above-mentioned features,the Ov-ZMF@NOFs exhibit expected electrochemical properties with ultra-long recyclability(high reversible capacity of 419 mAh g^(-1)at 6 A g^(-1))and good rate performance(capacity of 232 mAh g^(-1)at a current density of 16 A g^(-1)).Theoretical calculations underline the essential contribution of multiple heteroatoms doping in boosting the electrode conductivity and reducing the lithium-ion migration energy barrier.Combining controllable vacancy engineering and heteroatom doping technology at the nanoscale provides a new philosophy and concept for the design and fabrication of next-generation high-energy lithium-ion battery materials.展开更多
As a novel class of high-voltage cathode materials,spinel lithium transition metal oxides have been faced with demerits including pronounced structural instability caused by Jahn-Teller distortion(especially at the lo...As a novel class of high-voltage cathode materials,spinel lithium transition metal oxides have been faced with demerits including pronounced structural instability caused by Jahn-Teller distortion(especially at the lower voltage region)and severe capacity degradation despite their intriguing electrochemical properties.To extend their functionalities as broad-voltage cathodes,the sacrificial template method has been regarded as a promising way to realize structural and compositional control for desirable electrochemical behaviors.Herein,we report a synthetic protocol to directionally prepare Li Co Mn O_(4)(LCMO)using carboxyl-based metal-organic frameworks(MOFs)as self-sacrificing templates.Impressively,LCMO derived from Co Mn-BDC(H_(2)BDC=1,4-benzenedicarboxylate)displays superior electrochemical performances with a specific capacity of 151.6 m Ah g^(-1)at 1 C(150 m A g^(-1))after 120 cycles and excellent rate capacity of 91.9 m Ah g^(-1)at 10 C due to the morphology control,microstructural modulation,and atomic manipulation of the MOF precursor.Bestowed by the optimized atomic and electronic structure,abundant oxygen vacancies,and the nanostructure retained from MOF precursors,LCMO materials display extraordinary electrochemical properties,which have been extensively verified by both experimental and theoretical studies.This work not only provides guidelines for the directional design of spinel materials at molecular and atomic levels but also sheds light on the practical use of LIBs with broad range voltage.展开更多
Despite the dazzling theoretical capacity,the devasting electrochemical activity of Li_(2)MnO_(3)(LMO)caused by the difficult oxidation of Mn4+impedes its practical application as the lithium-ion battery(LIB)cathode.T...Despite the dazzling theoretical capacity,the devasting electrochemical activity of Li_(2)MnO_(3)(LMO)caused by the difficult oxidation of Mn4+impedes its practical application as the lithium-ion battery(LIB)cathode.The efficacious activation of the Li_(2)MnO_(3) by importing electrochemically active Mn3+ions or morphological engineering is instrumental to its lithium storage activity and structural integrity upon cycling.Herein,we propose a conceptual strategy with metal-organic frameworks(MOFs)as self-sacrificial templates to prepare oxygen-deficient Li_(2)MnO_(3)(O_v-LMO)for exalted lithium storage performance.Attributed to optimized morphological features,LMO materials derived from Mn-BDC(H_(2)BDC=1,4-dicarboxybenzene)delivered superior cycling/rate performances compared with their counterparts derived from Mn-BTC(H_(3)BTC=1,3,5-benzenetricarboxylicacid)and Mn-PTC(H_(4)PTC=pyromellitic acid).Both experimental and theoretical studies elucidate the efficacious activation of primitive LMO materials toward advanced lithium storage by importing oxygen deficiencies.Impressively,O_v-LMO derived from Mn-BDC(O_v-BDC-LMO)delivered intriguing reversible capacities(179.2 mA h g^(-1)at 20 mA g^(-1)after 200 cycles and 100.1 mA h g^(-1)at 80 mA g^(-1)after 300 cycles),which can be attributed to the small particle size that shortens pathways for Li+/electron transport,the enhanced redox activity induced by abundant oxygen vacancies,and the optimized electronic configuration that contributes to the faster lithium diffusivity.This work provides insights into the rational design of LMO by morphological and atomic modulation to direct its activation and practical application as an advanced LIB cathode.展开更多
Metal-organic frameworks(MOFs)can serve as prevailing anodes for lithium-ion batteries,due to their multiple redox-active sites and prominent structural compatibility.However,the poor electronic conductivity and infer...Metal-organic frameworks(MOFs)can serve as prevailing anodes for lithium-ion batteries,due to their multiple redox-active sites and prominent structural compatibility.However,the poor electronic conductivity and inferior cyclability hinder their further implementation.Herein,a synthetic methodology for trimetallic Fe-Co-Ni MOFs with nanoframe superstructures architecture(Fe-Co-Ni NFSs)via structural evolution is proposed for versatile anode materials for lithium storage.Ascribed to optimal compositional and structural optimization,the Fe-Co-Ni NFSs achieve exceptional electrochemical performance with superior specific capacity(1030 mAh g^(−1) at 0.1 A g^(−1)),outstanding rate capacity(414 mAh g^(−1) at 2 A g^(−1)),and prolonged cyclability(489 mAh g^(−1) upon 1000 cycles at 1 A g^(−1)).Both experimental and theoretical investigations reveal that the multi-component metal centers could boost electronic conductivity,confer multiple active sites,and energetically favor Li adsorption capability.Additionally,the nanoframe superstructures of Fe-Co-Ni NFSs could facilitate stress-buffering effect on volumetric expansion and prevent electrode pulverization,further improving the lithium storage capability.This work envisions a meticulous protocol for high-performance MOF anode materials for lithium-ion batteries.展开更多
As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which of...As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which offers a new approach to accommodate surplus wind power,is an excellent way to solve the former.Hence,this paper proposes to involve power-to-gas technology in the integrated electricity and natural gas systems(IEGSs).To solve the latter,on one hand,a new indicator,the scale factor of wind power integration,is introduced into the wind power stochastic model to better describe the uncertainty of grid-connected wind power;on the other hand,for quantizing and minimizing the impact of the uncertainties of wind power and system loads on system security,security risk constraints are established for the IEGS by the conditional value-at-risk method.By considering these two aspects,an MILP formulation of a security-risk based stochastic dynamic economic dispatch model for an IEGS is established,and GUROBI obtained from GAMS is used for the solution.Case studies are conducted on an IEGS consisting of a modified IEEE 39-bus system and the Belgium 20-node natural gas system to examine the effectiveness of the proposed dispatch model.展开更多
To date,Co-based metal-organic frameworks(Co-MOFs)have drawn much attention owing to their advantages of easy preparation,high porosity and adjustable structure.Because of these enticing properties,numerous efforts ha...To date,Co-based metal-organic frameworks(Co-MOFs)have drawn much attention owing to their advantages of easy preparation,high porosity and adjustable structure.Because of these enticing properties,numerous efforts have been devoted to their applications in energy storage and conversion.However,poor conductivity has become one of the biggest obstacles for large-scale use of pristine Co-MOFs.Subsequently,many attempts have been carried out to develop various Co-MOF derived materials as electrodes for rechargeable batteries in order to address the above-mentioned shortcoming and to enhance the electrical conductivity with improved stability during cycling.Moreover,in addition to improvement of Li-ion batteries in practical utilization,seeking for other rechargeable batteries is another urgent task due to the high cost and limited sources of metallic Li.Herein,by following the recent research progress,this review provides an overview of applications of Co-MOF derived materials in various rechargeable batteries including lithium-ion batteries,sodium-ion batteries,lithium-sulfur batteries,zinc air batteries and other rechargeable batteries,where they have been utilized as cathodes,anodes,separators and electrocatalysts.Accordingly,we categorize and compare the morphology driven electrochemical performance of various Co-MOF derivatives including porous carbon,cobalt oxides,cobalt chalcogenides,cobalt phosphides and corresponding composites.Finally,current challenges for large-scale production and commercialization of Co-MOF derived materials as well as some reasonable solutions have been discussed at the end.展开更多
Designing novel electrode materials with unique structures is of great significance for improving the performance of lithium ion batteries(LIBs).Herein,copper-doped Co_(1-x)Te@nitrogen-doped carbon hollow nanoboxes(Cu...Designing novel electrode materials with unique structures is of great significance for improving the performance of lithium ion batteries(LIBs).Herein,copper-doped Co_(1-x)Te@nitrogen-doped carbon hollow nanoboxes(Cu-Co_(1-x)Te@NC HNBs)have been fabricated by chemical etching of Cu Co-ZIF nanoboxes,followed by a successive high-temperature tellurization process.The as-synthesized Cu-Co_(1-x)Te@NC HNBs composite demonstrated faster ionic and electronic diffusion kinetics than the pristine Co Te@NC HNBs electrode.The existence of Co-vacancy promotes the reduction of Gibbs free energy change(ΔG_(H^(*)))and effectively improves the Li~+diffusion coefficient.XPS and theoretical calculations show that performance improvement is ascribed to the electronic interactions between Cu-Co_(1-x)Te and nitrogen-doped carbon(NC)that trigger the shift of the p-band towards facilitation of interfacial charge transfer,which in turn helps boost up the lithium storage property.Besides,the proposed Cu-doping-induced Co-vacancy strategy can also be extended to other conversion-type cobalt-based material(CoSe_(2))in addition to asobtained Cu-Co_(1-x)Se_(2)@NC HNBs anodes for long-life and high-capacity LIBs.More importantly,the fabricated LiCoO_(2)//Cu-Co_(1-x)Te@NC HNBs full cell exhibits a high energy density of 403 Wh kg^(-1)and a power density of 6000 W kg^(-1).We show that the energy/power density reported herein is higher than that of previously studied cobalt-based anodes,indicating the potential application of Cu-Co_(1-x)Te@NC HNBs as a superior electrode material for LIBs.展开更多
The development of energy storage technology is important for resolving the issues and challenges of utilizing sustainable green energy in modern-day society.As an emerging technology,lithium-ion batteries(LIBs)are a ...The development of energy storage technology is important for resolving the issues and challenges of utilizing sustainable green energy in modern-day society.As an emerging technology,lithium-ion batteries(LIBs)are a common source of power for a wide variety of electronic devices,and major advances require the development and exploitation of new electrode materials;thus,fundamental knowledge of their atomic and nanoscale properties is necessary.By moving beyond conven-tional cathode candidates,metal–organic frameworks(MOFs)chemistry provides an excellent direction for designing and developing promising high-performance cathode materials for use in LIBs.Here,we carry out an overarching discussion on the development and application of MOFs and their derivatives as cathodes for lithium-ion battery applications.A timely overview of the exciting progress of MOFs as well as MOF-derived metallic components is highlighted.The unique char-acteristics of MOFs,such as their large surface area,high tunable porosity with uniform pore size,unique structural and morphological features,controllable framework composition and low densities,combine together to provide good interfacial charge transport properties and short diffusion lengths for electrons and/or ions that adequately support electrochemical redox reactions.The progress of MOFs and their derived composites as cathode candidates for LIBs is emphasized based on their electrochemical results,while also discussing the remaining issues and potential upcoming research directions.展开更多
基金the financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2023b0145)Guangdong Provincial International Joint Research Center for Energy Storage Materials(2023A0505090009)。
文摘As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting the mechanical strains and alleviating phase degradation upon cycling.Hereinafter,we propose a strategy using a zeolitic imidazolate framework(ZIF)as the self-sacrificing template to directionally prepare a series of LiNi_(0.1)Co_(0.9)O_(2)(LNCO)with tailorable electrochemical properties.The rational selection of sintering temperature imparts the superiority of the resultant products in lithium storage,during which the sample prepared at 700℃(LNCO-700)outperforms its counterparts in cyclability(156.8 mA h g^(-1)at 1 C for 200 cycles in half cells,1 C=275 mA g^(-1))and rate capability due to the expedited ion/electron transport and the strengthen mechanical robustness.The feasibility of proper Ni doping is also divulged by half/full cell tests and theoretical study,during which LNCO-700(167 mA h g^(-1)at 1 C for 100 cycles in full cells)surpasses LCO-700 in battery performance due to the mitigated phase deterioration,stabilized layered structu re,ameliorated electro nic co nductivity,a nd exalted lithium sto rage activity.This work systematically unveils tailorable electrochemical behaviors of LNCO to better direct their practical application.
基金financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2023b0145)the Scientific Research Innovation Project of Graduate School of South China Normal University(2024KYLX047)financial support from the Australian Research Council,Centre for Materials Science,Queensland University of Technology.
文摘Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality.
文摘LED driving power is a necessary product for LED lighting;the behaviors of pursuing low-cost of some small and medium- sized enterprise producers in China directly affect the quality of LED power. Therefore, it is necessary to detect the reliability of the LED driving power. There are 4 main factors for the over-burning of the LED driving power: lightning oscillation frequency, voltage mutation frequency, switch motion frequency and static discharge frequency. For the above problems, this paper raises the LED driving power online detection system, including: surge voltage input module, main control module, pulse width modulation module, power module, thyristor control module, current transformer, amplifier, RMSDC conversion module, A/D conversion module, display module, main control module connecting to surge voltage input module. The main operating principle is that the main control module connects the pulse width modulation module, which connects the thyristor control pole of the thyristor control module, the first anode thereof connects the power module;the primary side of current transformer connects the second anode of the thyristor control module through two wire switches, and the secondary side thereof connects the amplifier, which connects the RMS-DC conversion module;RMS-DC conversion module connects the A/D conversion module, which connects the main control module;the main control module also connects the display module. In addition, the project also provides the detection functions of LED output current, voltage digital display and different loads.
基金Research and Development Plan Project in Key Fields of Guangdong Province (2020B0101030005)Basic and Applied Basic Research Fund of Guangdong Province (2019B1515120027)+1 种基金Scientific Research Innovation Project of Graduate School of South China Normal University (2024KYLX050)Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation (“Climbing Program” Special Funds, pdjh2024a109)。
文摘Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials.
基金financially supported by the Open Fund of Energy and Materials Chemistry Joint Laboratory of SCNU and TINCI,China (SCNU-TINCI-202207)。
文摘Solving the problems of low electrical conductivity and poor cycling durability in transition metal oxidesbased anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs)has already turned into an urgent requirement.In this paper,we successfully synthesized Co_(2)VO_(4)/Co compounds with Co-VMOF(metal-organic framework)as a sacrificial template and investigated their electrochemical mechanism in order to improve the electrochemical properties of LIBs and SIBs.The optimized heaping configuration and the existence of metallic Co catalyzed the formation of radical ions,thereby facilitating higher conductivity,shortening Li+and Na+transport paths,and providing more active sites.Co_(2)VO_(4)/Co constructed with 2-methylimidazole as a ligand showed a discharge capacity of 1605.1 mA h g^(-1)after 300 cycles at 0.1 A g^(-1)in LIB and 677.2 mA h g^(-1)in SIB.Density functional theory(DFT)calculation emphasizes the crucial role of Co_(2)VO_(4)/Co in enhancing electrode conductivity,decreasing the migratory energy barrier,and thereby strengthening electrochemical properties.This heterostructure building technique may pave the way for the development of high-performance LIBs and SIBs.Furthermore,the problem of the low first-loop coulombic efficiency faced by transition metal oxides is improved.
基金the financial support from the Research and Development Plan Project in Key Fields of Guangdong Province(2020B0101030005)Applied Special Project of Guangdong Provincial Science and Technology Plan(2017B090917002)+1 种基金Basic and Applied Basic Research Fund of Guangdong Province(2019B1515120027)Key R&D projects in Guangdong Province(2020B0101030005)。
文摘LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechanism involving substantial structural rearrangements,resulting in unsatisfactory rate performance.Carbon coating,cation doping,and morphological control have been widely employed to reconcile these issues.Inspired by these,we propose a synthetic route with metal–organic frameworks(MOFs)as self-sacrificial templates to simultaneously realize shape modulation,Mn doping,and N-doped carbon coating for enhanced electrochemical performances.The as-synthesized Li MnxFe1–xPO4/C(x=0,0.25,and0.5)deliver tunable electrochemical behaviors induced by the MOF templates,among which LiMn_(0.25)Fe_(0.75)PO_(4)/C outperforms its counterparts in cyclability(164.7 mA h g^(-1)after 200 cycles at 0.5 C)and rate capability(116.3 mA h g^(-1)at 10 C).Meanwhile,the ex-situ XRD reveals a dominant single-phase solid solution mechanism of LiMn_(0.25)Fe_(0.75)PO_(4)/C during delithiation,contrary to the pristine LiFePO_(4),without major structural reconstruction,which helps to explain the superior rate performance.Furthermore,the density functional theory(DFT)calculations verify the effects of Mn doping and embody the superiority of LiMn_(0.25)Fe_(0.75)PO_(4)/C as a LIB cathode,which well supports the experimental observations.This work provides insightful guidance for the design of tunable MOF-derived mixed transitionmetal systems for advanced LIBs.
基金the financial support of the Guangzhou Science and Technology Project,China(Grant No.201904010213).
文摘Rational manipulation of multicomponent materials into a sophisticated architecture is a prerequisite for developing lithium‐ion batteries.However,mechanical diffusion‐induced strain accumulation leads to sluggish diffusion kinetics and anomalous structure instability,further resulting in inferior long‐term cyclability and rate performance.Herein,the von Mises stress distribution on open microcages composed of secondary nanoparticles(OCNs)is mechanically investigated by finite element simulation,which elucidates the pronounced stress‐release effect on OCNs architecture.Afterward,a facile metal–organic framework‐derived methodology is proposed for constructing multihierarchical carbon‐encapsulated oxygen vacancy‐enriched MnO/Ni OCNs(OV‐MnO/Ni OCNs).Due to structural and compositional integration,the OV‐MnO/Ni OCNs achieve extraordinary lithium storage performance with excellent reversible capacity(1905.1 mAh g^(−1) at 0.2 A g^(−1)),ultrahigh cycling stability(1653.5 mAh g^(−1) at 2 A g^(−1) up to 600 cycles),and considerable rate capability(463.3 mAh g^(−1) even at 10 A g^(−1)).The primary lithium storage mechanisms are further systematically determined by experimental and theoretical investigations.The enriched oxygen vacancies,metallic Ni configuration,and N‐doped carbonaceous matrix provide more active sites,construct omnidirectional diffusion pathways,suppress volume expansion,and boost electronic conductivity,thus yielding an exceptional diffusivity coefficient and expedited electrochemical kinetics.This study offers profound insights for the elaborate design of multicompositional electrodes into a mechanical stress‐release structure toward advanced energy storage application and development.
基金support from Guangzhou Science and Technology Project,China(no.201904010213)Special Funds for the Cultivation of Guangdong College Students'Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2021a0129).
文摘Manganese fluoride(MnF2)is a high-performance lithium-ion battery anode material with an excellent structural stability,low synthesis cost,and better manufacturing convenience.However,its low theoretical capacity(577 mAh g^(-1)),weak conductivity of fluoride,and poor recyclability limit its practical application.Fortunately,oxygen vacancies(Ov)and heteroatomic doping are among the most promising strategies to modulate the inherent reduced electronic conductivity and kinetic response of electrode materials in order to boost their lithium storage capacity.Herein,self-templating,self-optimizing,and self-supporting metal-organic framework template approach with the introduction of oxygen vacancies by substitution of exogenous heteroatoms is proposed,where triple heteroatom-doped(N,O,and F)carbon-encapsulated MOF-derived manganese fluoride(Ov-ZMF@NOFs)microstructures are designed.Interestingly,the exogenously introduced triple heteroatomic carbon matrix forms a fluffy three-dimensional mechanical structure,interlaced conducting networks,efficient conducting pathways,and intense electrochemical dynamics at the periphery of the manganese fluoride nanoparticles.Benefiting from the above-mentioned features,the Ov-ZMF@NOFs exhibit expected electrochemical properties with ultra-long recyclability(high reversible capacity of 419 mAh g^(-1)at 6 A g^(-1))and good rate performance(capacity of 232 mAh g^(-1)at a current density of 16 A g^(-1)).Theoretical calculations underline the essential contribution of multiple heteroatoms doping in boosting the electrode conductivity and reducing the lithium-ion migration energy barrier.Combining controllable vacancy engineering and heteroatom doping technology at the nanoscale provides a new philosophy and concept for the design and fabrication of next-generation high-energy lithium-ion battery materials.
基金the financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2022b0135)the Open Fund of Energy and Materials Chemistry Joint Laboratory of SCNU and TINCI(SCNU-TINCI202207)。
文摘As a novel class of high-voltage cathode materials,spinel lithium transition metal oxides have been faced with demerits including pronounced structural instability caused by Jahn-Teller distortion(especially at the lower voltage region)and severe capacity degradation despite their intriguing electrochemical properties.To extend their functionalities as broad-voltage cathodes,the sacrificial template method has been regarded as a promising way to realize structural and compositional control for desirable electrochemical behaviors.Herein,we report a synthetic protocol to directionally prepare Li Co Mn O_(4)(LCMO)using carboxyl-based metal-organic frameworks(MOFs)as self-sacrificing templates.Impressively,LCMO derived from Co Mn-BDC(H_(2)BDC=1,4-benzenedicarboxylate)displays superior electrochemical performances with a specific capacity of 151.6 m Ah g^(-1)at 1 C(150 m A g^(-1))after 120 cycles and excellent rate capacity of 91.9 m Ah g^(-1)at 10 C due to the morphology control,microstructural modulation,and atomic manipulation of the MOF precursor.Bestowed by the optimized atomic and electronic structure,abundant oxygen vacancies,and the nanostructure retained from MOF precursors,LCMO materials display extraordinary electrochemical properties,which have been extensively verified by both experimental and theoretical studies.This work not only provides guidelines for the directional design of spinel materials at molecular and atomic levels but also sheds light on the practical use of LIBs with broad range voltage.
基金the financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2023b0145)the Research and Development Plan Project in Key Fields of Guangdong Province(2020B0101030005)+1 种基金the Applied special project of Guangdong Provincial Science and Technology Plan(2017B090917002)the Basic and Applied Basic Research Fund of Guangdong Province(2019B1515120027)。
文摘Despite the dazzling theoretical capacity,the devasting electrochemical activity of Li_(2)MnO_(3)(LMO)caused by the difficult oxidation of Mn4+impedes its practical application as the lithium-ion battery(LIB)cathode.The efficacious activation of the Li_(2)MnO_(3) by importing electrochemically active Mn3+ions or morphological engineering is instrumental to its lithium storage activity and structural integrity upon cycling.Herein,we propose a conceptual strategy with metal-organic frameworks(MOFs)as self-sacrificial templates to prepare oxygen-deficient Li_(2)MnO_(3)(O_v-LMO)for exalted lithium storage performance.Attributed to optimized morphological features,LMO materials derived from Mn-BDC(H_(2)BDC=1,4-dicarboxybenzene)delivered superior cycling/rate performances compared with their counterparts derived from Mn-BTC(H_(3)BTC=1,3,5-benzenetricarboxylicacid)and Mn-PTC(H_(4)PTC=pyromellitic acid).Both experimental and theoretical studies elucidate the efficacious activation of primitive LMO materials toward advanced lithium storage by importing oxygen deficiencies.Impressively,O_v-LMO derived from Mn-BDC(O_v-BDC-LMO)delivered intriguing reversible capacities(179.2 mA h g^(-1)at 20 mA g^(-1)after 200 cycles and 100.1 mA h g^(-1)at 80 mA g^(-1)after 300 cycles),which can be attributed to the small particle size that shortens pathways for Li+/electron transport,the enhanced redox activity induced by abundant oxygen vacancies,and the optimized electronic configuration that contributes to the faster lithium diffusivity.This work provides insights into the rational design of LMO by morphological and atomic modulation to direct its activation and practical application as an advanced LIB cathode.
基金We gratefully acknowledge the financial support from the Guangzhou Science and Technology Project (No.201904010213).
文摘Metal-organic frameworks(MOFs)can serve as prevailing anodes for lithium-ion batteries,due to their multiple redox-active sites and prominent structural compatibility.However,the poor electronic conductivity and inferior cyclability hinder their further implementation.Herein,a synthetic methodology for trimetallic Fe-Co-Ni MOFs with nanoframe superstructures architecture(Fe-Co-Ni NFSs)via structural evolution is proposed for versatile anode materials for lithium storage.Ascribed to optimal compositional and structural optimization,the Fe-Co-Ni NFSs achieve exceptional electrochemical performance with superior specific capacity(1030 mAh g^(−1) at 0.1 A g^(−1)),outstanding rate capacity(414 mAh g^(−1) at 2 A g^(−1)),and prolonged cyclability(489 mAh g^(−1) upon 1000 cycles at 1 A g^(−1)).Both experimental and theoretical investigations reveal that the multi-component metal centers could boost electronic conductivity,confer multiple active sites,and energetically favor Li adsorption capability.Additionally,the nanoframe superstructures of Fe-Co-Ni NFSs could facilitate stress-buffering effect on volumetric expansion and prevent electrode pulverization,further improving the lithium storage capability.This work envisions a meticulous protocol for high-performance MOF anode materials for lithium-ion batteries.
基金This work was supported by National Natural Science Foundation of China(No.51777077)Natural Science Foundation of Guangdong Province(2017A030313304).
文摘As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which offers a new approach to accommodate surplus wind power,is an excellent way to solve the former.Hence,this paper proposes to involve power-to-gas technology in the integrated electricity and natural gas systems(IEGSs).To solve the latter,on one hand,a new indicator,the scale factor of wind power integration,is introduced into the wind power stochastic model to better describe the uncertainty of grid-connected wind power;on the other hand,for quantizing and minimizing the impact of the uncertainties of wind power and system loads on system security,security risk constraints are established for the IEGS by the conditional value-at-risk method.By considering these two aspects,an MILP formulation of a security-risk based stochastic dynamic economic dispatch model for an IEGS is established,and GUROBI obtained from GAMS is used for the solution.Case studies are conducted on an IEGS consisting of a modified IEEE 39-bus system and the Belgium 20-node natural gas system to examine the effectiveness of the proposed dispatch model.
基金financially supported by the Guangzhou Science and Technology Project,China(No.201904010213)the Foundation of Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application(Nos.LFCCMCA-01 and LFCCMCA-06)+1 种基金the Scientific Research Launch Project of Anhui Polytechnic University(No.2020YQQ057)the Scientific Research Project of Anhui Polytechnic University(No.Xjky2020090)。
文摘To date,Co-based metal-organic frameworks(Co-MOFs)have drawn much attention owing to their advantages of easy preparation,high porosity and adjustable structure.Because of these enticing properties,numerous efforts have been devoted to their applications in energy storage and conversion.However,poor conductivity has become one of the biggest obstacles for large-scale use of pristine Co-MOFs.Subsequently,many attempts have been carried out to develop various Co-MOF derived materials as electrodes for rechargeable batteries in order to address the above-mentioned shortcoming and to enhance the electrical conductivity with improved stability during cycling.Moreover,in addition to improvement of Li-ion batteries in practical utilization,seeking for other rechargeable batteries is another urgent task due to the high cost and limited sources of metallic Li.Herein,by following the recent research progress,this review provides an overview of applications of Co-MOF derived materials in various rechargeable batteries including lithium-ion batteries,sodium-ion batteries,lithium-sulfur batteries,zinc air batteries and other rechargeable batteries,where they have been utilized as cathodes,anodes,separators and electrocatalysts.Accordingly,we categorize and compare the morphology driven electrochemical performance of various Co-MOF derivatives including porous carbon,cobalt oxides,cobalt chalcogenides,cobalt phosphides and corresponding composites.Finally,current challenges for large-scale production and commercialization of Co-MOF derived materials as well as some reasonable solutions have been discussed at the end.
基金the Natural Science Foundation of Anhui Province Higher Education Institutions(No.KJ2021A0501)the Foundation of Scientific Research Project of Anhui Polytechnic University(No.Xjky2020090)+4 种基金the Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application(Nos.LFCCMCA-01 and LFCCMCA-06)the Scientific Research Launch Project of Anhui Polytechnic University(No.2020YQQ057)the Innovation and Entrepreneurship Training Program for College Students in Anhui Province(No.S202110363265)the National Key Research and Development Program of China(2019YFA0705702)the National Natural Science Foundation of China(21902188)。
文摘Designing novel electrode materials with unique structures is of great significance for improving the performance of lithium ion batteries(LIBs).Herein,copper-doped Co_(1-x)Te@nitrogen-doped carbon hollow nanoboxes(Cu-Co_(1-x)Te@NC HNBs)have been fabricated by chemical etching of Cu Co-ZIF nanoboxes,followed by a successive high-temperature tellurization process.The as-synthesized Cu-Co_(1-x)Te@NC HNBs composite demonstrated faster ionic and electronic diffusion kinetics than the pristine Co Te@NC HNBs electrode.The existence of Co-vacancy promotes the reduction of Gibbs free energy change(ΔG_(H^(*)))and effectively improves the Li~+diffusion coefficient.XPS and theoretical calculations show that performance improvement is ascribed to the electronic interactions between Cu-Co_(1-x)Te and nitrogen-doped carbon(NC)that trigger the shift of the p-band towards facilitation of interfacial charge transfer,which in turn helps boost up the lithium storage property.Besides,the proposed Cu-doping-induced Co-vacancy strategy can also be extended to other conversion-type cobalt-based material(CoSe_(2))in addition to asobtained Cu-Co_(1-x)Se_(2)@NC HNBs anodes for long-life and high-capacity LIBs.More importantly,the fabricated LiCoO_(2)//Cu-Co_(1-x)Te@NC HNBs full cell exhibits a high energy density of 403 Wh kg^(-1)and a power density of 6000 W kg^(-1).We show that the energy/power density reported herein is higher than that of previously studied cobalt-based anodes,indicating the potential application of Cu-Co_(1-x)Te@NC HNBs as a superior electrode material for LIBs.
基金support from the Guangzhou Science and Technology Project,China(No.201904010213).
文摘The development of energy storage technology is important for resolving the issues and challenges of utilizing sustainable green energy in modern-day society.As an emerging technology,lithium-ion batteries(LIBs)are a common source of power for a wide variety of electronic devices,and major advances require the development and exploitation of new electrode materials;thus,fundamental knowledge of their atomic and nanoscale properties is necessary.By moving beyond conven-tional cathode candidates,metal–organic frameworks(MOFs)chemistry provides an excellent direction for designing and developing promising high-performance cathode materials for use in LIBs.Here,we carry out an overarching discussion on the development and application of MOFs and their derivatives as cathodes for lithium-ion battery applications.A timely overview of the exciting progress of MOFs as well as MOF-derived metallic components is highlighted.The unique char-acteristics of MOFs,such as their large surface area,high tunable porosity with uniform pore size,unique structural and morphological features,controllable framework composition and low densities,combine together to provide good interfacial charge transport properties and short diffusion lengths for electrons and/or ions that adequately support electrochemical redox reactions.The progress of MOFs and their derived composites as cathode candidates for LIBs is emphasized based on their electrochemical results,while also discussing the remaining issues and potential upcoming research directions.