期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Unveiling the tailorable electrochemical properties of zeolitic imidazolate framework-derived Ni-doped LiCoO_(2) for lithium-ion batteries in half/full cells 被引量:1
1
作者 Jian-En Zhou Yiqing Liu +6 位作者 Zhijian Peng Quanyi Ye Hua Zhong xiaoming lin Ronghua Zeng Yongbo Wu Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期229-242,I0006,共15页
As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting t... As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting the mechanical strains and alleviating phase degradation upon cycling.Hereinafter,we propose a strategy using a zeolitic imidazolate framework(ZIF)as the self-sacrificing template to directionally prepare a series of LiNi_(0.1)Co_(0.9)O_(2)(LNCO)with tailorable electrochemical properties.The rational selection of sintering temperature imparts the superiority of the resultant products in lithium storage,during which the sample prepared at 700℃(LNCO-700)outperforms its counterparts in cyclability(156.8 mA h g^(-1)at 1 C for 200 cycles in half cells,1 C=275 mA g^(-1))and rate capability due to the expedited ion/electron transport and the strengthen mechanical robustness.The feasibility of proper Ni doping is also divulged by half/full cell tests and theoretical study,during which LNCO-700(167 mA h g^(-1)at 1 C for 100 cycles in full cells)surpasses LCO-700 in battery performance due to the mitigated phase deterioration,stabilized layered structu re,ameliorated electro nic co nductivity,a nd exalted lithium sto rage activity.This work systematically unveils tailorable electrochemical behaviors of LNCO to better direct their practical application. 展开更多
关键词 Lithium-ion batteries Zeolitic imidazolate framework LiNi_(0.1)Co_(0.9)O_(2) Electrochemical properties
下载PDF
Prussian Blue Analogue‑Templated Nanocomposites for Alkali‑Ion Batteries:Progress and Perspective
2
作者 Jian‑En Zhou Yilin Li +1 位作者 xiaoming lin Jiaye Ye 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期216-261,共46页
Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion... Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality. 展开更多
关键词 Prussian blue analogues Self-sacrificial template Lithium-ion batteries Sodium-ion batteries Potassium-ion batteries
下载PDF
LED Driving Power Online Detection System
3
作者 Youjian Lei xiaoming lin 《Modern Electronic Technology》 2017年第1期1-4,共4页
LED driving power is a necessary product for LED lighting;the behaviors of pursuing low-cost of some small and medium- sized enterprise producers in China directly affect the quality of LED power. Therefore, it is nec... LED driving power is a necessary product for LED lighting;the behaviors of pursuing low-cost of some small and medium- sized enterprise producers in China directly affect the quality of LED power. Therefore, it is necessary to detect the reliability of the LED driving power. There are 4 main factors for the over-burning of the LED driving power: lightning oscillation frequency, voltage mutation frequency, switch motion frequency and static discharge frequency. For the above problems, this paper raises the LED driving power online detection system, including: surge voltage input module, main control module, pulse width modulation module, power module, thyristor control module, current transformer, amplifier, RMSDC conversion module, A/D conversion module, display module, main control module connecting to surge voltage input module. The main operating principle is that the main control module connects the pulse width modulation module, which connects the thyristor control pole of the thyristor control module, the first anode thereof connects the power module;the primary side of current transformer connects the second anode of the thyristor control module through two wire switches, and the secondary side thereof connects the amplifier, which connects the RMS-DC conversion module;RMS-DC conversion module connects the A/D conversion module, which connects the main control module;the main control module also connects the display module. In addition, the project also provides the detection functions of LED output current, voltage digital display and different loads. 展开更多
关键词 ROTARY ENCODER CURRENT transformer Output CURRENT LOCUS CURVE RMS-DC conversion module
下载PDF
Elucidating the role of embedding dispersed cobalt sites in nitrogen-doped carbon frameworks in Si-based anodes for stable and superior storage
4
作者 Yueying Chen Ping Li +8 位作者 Mianying Huang Chunlei Wu Qianhong Huang Tingyang Xie xiaoming lin Akif Zeb Yongbo Wu Zhiguang Xu Yuepeng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期180-195,共16页
Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon s... Unsatisfactory conductivity and volume effects have hindered the commercial application of siliconbased materials as advanced anode materials for high-performance lithium-ion batteries. Herein, nitrogen doped carbon silicon matrix composite with atomically dispersed Co sites(Si/Co-N-C) is obtained via the design of the frame structure loaded with nano-components and the multi-element hybrid strategy. Co atoms are uniformly fixed to the N-C frame and tightly packed with nanoscale silicon particles as an activation and protection building block. The mechanism of the N-C framework of loaded metal Co in the Si alloying process is revealed by electrochemical kinetic analysis and ex situ characterization tests.Impressively, the nitrogen-doped Co site activates the intercalation of the outer carbon matrix to supplement the additional capacity. The Co nanoparticles with high conductivity and support enhance the conductivity and structural stability of the composite, accelerating the Li^(+)/Na^(+) diffusion kinetics. Density functional theory(DFT) calculation confirms that the hetero-structure Si/Co-N-C adjusts the electronic structure to obtain good lithium-ion adsorption energy, reduces the Li^(+)/Na^(+) migration energy barrier.This work provides meaningful guidance for the development of high-performance metal/non-metal modified anode materials. 展开更多
关键词 Co nanoparticles Nitrogen doped carbon Silicon Lithium/sodium storage Metal-organic frameworks(MOFs)
下载PDF
From charge storage mechanism to performance:A strategy toward boosted lithium/sodium storage through heterostructure optimization
5
作者 Xiaoke Zhang Guangfa Deng +7 位作者 Mianying Huang Zhaohui Xu Jianlin Huang Xuan Xu Zhiguang Xu Maochan Li Lei Hu xiaoming lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期112-124,I0003,共14页
Solving the problems of low electrical conductivity and poor cycling durability in transition metal oxidesbased anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs)has already turned into an u... Solving the problems of low electrical conductivity and poor cycling durability in transition metal oxidesbased anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs)has already turned into an urgent requirement.In this paper,we successfully synthesized Co_(2)VO_(4)/Co compounds with Co-VMOF(metal-organic framework)as a sacrificial template and investigated their electrochemical mechanism in order to improve the electrochemical properties of LIBs and SIBs.The optimized heaping configuration and the existence of metallic Co catalyzed the formation of radical ions,thereby facilitating higher conductivity,shortening Li+and Na+transport paths,and providing more active sites.Co_(2)VO_(4)/Co constructed with 2-methylimidazole as a ligand showed a discharge capacity of 1605.1 mA h g^(-1)after 300 cycles at 0.1 A g^(-1)in LIB and 677.2 mA h g^(-1)in SIB.Density functional theory(DFT)calculation emphasizes the crucial role of Co_(2)VO_(4)/Co in enhancing electrode conductivity,decreasing the migratory energy barrier,and thereby strengthening electrochemical properties.This heterostructure building technique may pave the way for the development of high-performance LIBs and SIBs.Furthermore,the problem of the low first-loop coulombic efficiency faced by transition metal oxides is improved. 展开更多
关键词 Metal-organic framework HETEROSTRUCTURE Lithium-ion batteries Sodium-ion batteries DFT calculation
下载PDF
Tuning the electrochemical behaviors of N-doped LiMn_(x)Fe_(1–x)PO_(4)/C via cation engineering with metal-organic framework-templated strategy 被引量:2
6
作者 Yilin Li Zhaohui Xu +4 位作者 Xinyu Zhang Zhenyu Wu Jian-En Zhou Jinjiang Zhang xiaoming lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期239-253,I0008,共16页
LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechani... LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechanism involving substantial structural rearrangements,resulting in unsatisfactory rate performance.Carbon coating,cation doping,and morphological control have been widely employed to reconcile these issues.Inspired by these,we propose a synthetic route with metal–organic frameworks(MOFs)as self-sacrificial templates to simultaneously realize shape modulation,Mn doping,and N-doped carbon coating for enhanced electrochemical performances.The as-synthesized Li MnxFe1–xPO4/C(x=0,0.25,and0.5)deliver tunable electrochemical behaviors induced by the MOF templates,among which LiMn_(0.25)Fe_(0.75)PO_(4)/C outperforms its counterparts in cyclability(164.7 mA h g^(-1)after 200 cycles at 0.5 C)and rate capability(116.3 mA h g^(-1)at 10 C).Meanwhile,the ex-situ XRD reveals a dominant single-phase solid solution mechanism of LiMn_(0.25)Fe_(0.75)PO_(4)/C during delithiation,contrary to the pristine LiFePO_(4),without major structural reconstruction,which helps to explain the superior rate performance.Furthermore,the density functional theory(DFT)calculations verify the effects of Mn doping and embody the superiority of LiMn_(0.25)Fe_(0.75)PO_(4)/C as a LIB cathode,which well supports the experimental observations.This work provides insightful guidance for the design of tunable MOF-derived mixed transitionmetal systems for advanced LIBs. 展开更多
关键词 LiMn_(x)Fe_(1–x)PO_(4)/C Mn doping Metal-organic framework Cathode
下载PDF
Carbon‐encapsulated anionic‐defective MnO/Ni open microcages: A hierarchical stress‐release engineering for superior lithium storage 被引量:1
7
作者 Jia lin Yingying Peng +3 位作者 Reddivari Chenna Krishna Reddy Akif Zeb xiaoming lin Yan-Hui Sun 《Carbon Energy》 SCIE CAS CSCD 2023年第1期218-232,共15页
Rational manipulation of multicomponent materials into a sophisticated architecture is a prerequisite for developing lithium‐ion batteries.However,mechanical diffusion‐induced strain accumulation leads to sluggish d... Rational manipulation of multicomponent materials into a sophisticated architecture is a prerequisite for developing lithium‐ion batteries.However,mechanical diffusion‐induced strain accumulation leads to sluggish diffusion kinetics and anomalous structure instability,further resulting in inferior long‐term cyclability and rate performance.Herein,the von Mises stress distribution on open microcages composed of secondary nanoparticles(OCNs)is mechanically investigated by finite element simulation,which elucidates the pronounced stress‐release effect on OCNs architecture.Afterward,a facile metal–organic framework‐derived methodology is proposed for constructing multihierarchical carbon‐encapsulated oxygen vacancy‐enriched MnO/Ni OCNs(OV‐MnO/Ni OCNs).Due to structural and compositional integration,the OV‐MnO/Ni OCNs achieve extraordinary lithium storage performance with excellent reversible capacity(1905.1 mAh g^(−1) at 0.2 A g^(−1)),ultrahigh cycling stability(1653.5 mAh g^(−1) at 2 A g^(−1) up to 600 cycles),and considerable rate capability(463.3 mAh g^(−1) even at 10 A g^(−1)).The primary lithium storage mechanisms are further systematically determined by experimental and theoretical investigations.The enriched oxygen vacancies,metallic Ni configuration,and N‐doped carbonaceous matrix provide more active sites,construct omnidirectional diffusion pathways,suppress volume expansion,and boost electronic conductivity,thus yielding an exceptional diffusivity coefficient and expedited electrochemical kinetics.This study offers profound insights for the elaborate design of multicompositional electrodes into a mechanical stress‐release structure toward advanced energy storage application and development. 展开更多
关键词 DFT calculations finite element simulation lithium-ion batteries metal–organic frameworks oxygen vacancies
下载PDF
Interfacial Engineering of Defect-Rich and Multi-Heteroatom-Doped Metal-Organic Framework-Derived Manganese Fluoride Anodes to Boost Lithium Storage 被引量:1
8
作者 Xiaohong Tan Jiawei Liu +3 位作者 Jiating Huang Yilin Li Akif Zeb xiaoming lin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期449-459,共11页
Manganese fluoride(MnF2)is a high-performance lithium-ion battery anode material with an excellent structural stability,low synthesis cost,and better manufacturing convenience.However,its low theoretical capacity(577 ... Manganese fluoride(MnF2)is a high-performance lithium-ion battery anode material with an excellent structural stability,low synthesis cost,and better manufacturing convenience.However,its low theoretical capacity(577 mAh g^(-1)),weak conductivity of fluoride,and poor recyclability limit its practical application.Fortunately,oxygen vacancies(Ov)and heteroatomic doping are among the most promising strategies to modulate the inherent reduced electronic conductivity and kinetic response of electrode materials in order to boost their lithium storage capacity.Herein,self-templating,self-optimizing,and self-supporting metal-organic framework template approach with the introduction of oxygen vacancies by substitution of exogenous heteroatoms is proposed,where triple heteroatom-doped(N,O,and F)carbon-encapsulated MOF-derived manganese fluoride(Ov-ZMF@NOFs)microstructures are designed.Interestingly,the exogenously introduced triple heteroatomic carbon matrix forms a fluffy three-dimensional mechanical structure,interlaced conducting networks,efficient conducting pathways,and intense electrochemical dynamics at the periphery of the manganese fluoride nanoparticles.Benefiting from the above-mentioned features,the Ov-ZMF@NOFs exhibit expected electrochemical properties with ultra-long recyclability(high reversible capacity of 419 mAh g^(-1)at 6 A g^(-1))and good rate performance(capacity of 232 mAh g^(-1)at a current density of 16 A g^(-1)).Theoretical calculations underline the essential contribution of multiple heteroatoms doping in boosting the electrode conductivity and reducing the lithium-ion migration energy barrier.Combining controllable vacancy engineering and heteroatom doping technology at the nanoscale provides a new philosophy and concept for the design and fabrication of next-generation high-energy lithium-ion battery materials. 展开更多
关键词 anode lithium-ion batteries metal-organic framework multi-heteroatomic doping oxygen vacancies
下载PDF
Molecular and atomic manipulation of metal-organic framework-derived LiCoMnO_(4):An oxygen-deficient strategy for advanced lithium storage
9
作者 Jian-En Zhou Jiahao Chen +2 位作者 Xiaoke Zhang Akif Zeb xiaoming lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期216-228,I0006,共14页
As a novel class of high-voltage cathode materials,spinel lithium transition metal oxides have been faced with demerits including pronounced structural instability caused by Jahn-Teller distortion(especially at the lo... As a novel class of high-voltage cathode materials,spinel lithium transition metal oxides have been faced with demerits including pronounced structural instability caused by Jahn-Teller distortion(especially at the lower voltage region)and severe capacity degradation despite their intriguing electrochemical properties.To extend their functionalities as broad-voltage cathodes,the sacrificial template method has been regarded as a promising way to realize structural and compositional control for desirable electrochemical behaviors.Herein,we report a synthetic protocol to directionally prepare Li Co Mn O_(4)(LCMO)using carboxyl-based metal-organic frameworks(MOFs)as self-sacrificing templates.Impressively,LCMO derived from Co Mn-BDC(H_(2)BDC=1,4-benzenedicarboxylate)displays superior electrochemical performances with a specific capacity of 151.6 m Ah g^(-1)at 1 C(150 m A g^(-1))after 120 cycles and excellent rate capacity of 91.9 m Ah g^(-1)at 10 C due to the morphology control,microstructural modulation,and atomic manipulation of the MOF precursor.Bestowed by the optimized atomic and electronic structure,abundant oxygen vacancies,and the nanostructure retained from MOF precursors,LCMO materials display extraordinary electrochemical properties,which have been extensively verified by both experimental and theoretical studies.This work not only provides guidelines for the directional design of spinel materials at molecular and atomic levels but also sheds light on the practical use of LIBs with broad range voltage. 展开更多
关键词 Lithium-ion battery CATHODE MOFS LiCoMnO_(4) Controllable synthesis Atomic manipulation
下载PDF
A versatile strategy to activate self-sacrificial templated Li_(2)MnO_(3) by defect engineering toward advanced lithium storage
10
作者 Jian-En Zhou Yanhua Peng +7 位作者 Xiaoyan Sang Chunlei Wu Yiqing Liu Zhijian Peng Hong Ou Yongbo Wu xiaoming lin Yuepeng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期164-180,I0007,共18页
Despite the dazzling theoretical capacity,the devasting electrochemical activity of Li_(2)MnO_(3)(LMO)caused by the difficult oxidation of Mn4+impedes its practical application as the lithium-ion battery(LIB)cathode.T... Despite the dazzling theoretical capacity,the devasting electrochemical activity of Li_(2)MnO_(3)(LMO)caused by the difficult oxidation of Mn4+impedes its practical application as the lithium-ion battery(LIB)cathode.The efficacious activation of the Li_(2)MnO_(3) by importing electrochemically active Mn3+ions or morphological engineering is instrumental to its lithium storage activity and structural integrity upon cycling.Herein,we propose a conceptual strategy with metal-organic frameworks(MOFs)as self-sacrificial templates to prepare oxygen-deficient Li_(2)MnO_(3)(O_v-LMO)for exalted lithium storage performance.Attributed to optimized morphological features,LMO materials derived from Mn-BDC(H_(2)BDC=1,4-dicarboxybenzene)delivered superior cycling/rate performances compared with their counterparts derived from Mn-BTC(H_(3)BTC=1,3,5-benzenetricarboxylicacid)and Mn-PTC(H_(4)PTC=pyromellitic acid).Both experimental and theoretical studies elucidate the efficacious activation of primitive LMO materials toward advanced lithium storage by importing oxygen deficiencies.Impressively,O_v-LMO derived from Mn-BDC(O_v-BDC-LMO)delivered intriguing reversible capacities(179.2 mA h g^(-1)at 20 mA g^(-1)after 200 cycles and 100.1 mA h g^(-1)at 80 mA g^(-1)after 300 cycles),which can be attributed to the small particle size that shortens pathways for Li+/electron transport,the enhanced redox activity induced by abundant oxygen vacancies,and the optimized electronic configuration that contributes to the faster lithium diffusivity.This work provides insights into the rational design of LMO by morphological and atomic modulation to direct its activation and practical application as an advanced LIB cathode. 展开更多
关键词 Li_(2)MnO_(3) Metal-organic framework Oxygen vacancy Lithium-ion battery Electrochemical activity
下载PDF
Trimetallic Metal-Organic Framework Nanoframe Superstructures: A Stress-Buffering Architecture Engineering of Anode Material toward Boosted Lithium Storage Performance
11
作者 Jia lin Chao Xu +5 位作者 Man Lu xiaoming lin Zeeshan Ali Chenghui Zeng Xuan Xu and Yifan Luo 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期289-299,共11页
Metal-organic frameworks(MOFs)can serve as prevailing anodes for lithium-ion batteries,due to their multiple redox-active sites and prominent structural compatibility.However,the poor electronic conductivity and infer... Metal-organic frameworks(MOFs)can serve as prevailing anodes for lithium-ion batteries,due to their multiple redox-active sites and prominent structural compatibility.However,the poor electronic conductivity and inferior cyclability hinder their further implementation.Herein,a synthetic methodology for trimetallic Fe-Co-Ni MOFs with nanoframe superstructures architecture(Fe-Co-Ni NFSs)via structural evolution is proposed for versatile anode materials for lithium storage.Ascribed to optimal compositional and structural optimization,the Fe-Co-Ni NFSs achieve exceptional electrochemical performance with superior specific capacity(1030 mAh g^(−1) at 0.1 A g^(−1)),outstanding rate capacity(414 mAh g^(−1) at 2 A g^(−1)),and prolonged cyclability(489 mAh g^(−1) upon 1000 cycles at 1 A g^(−1)).Both experimental and theoretical investigations reveal that the multi-component metal centers could boost electronic conductivity,confer multiple active sites,and energetically favor Li adsorption capability.Additionally,the nanoframe superstructures of Fe-Co-Ni NFSs could facilitate stress-buffering effect on volumetric expansion and prevent electrode pulverization,further improving the lithium storage capability.This work envisions a meticulous protocol for high-performance MOF anode materials for lithium-ion batteries. 展开更多
关键词 ANODE DFT calculation lithium storage stress-buffering architecture trimetallic metal-organic framework
下载PDF
MOFs作为模板制备锂离子电池负极材料的研究进展 被引量:9
12
作者 林佳 林晓明 +1 位作者 石光 蔡跃鹏 《科学通报》 EI CAS CSCD 北大核心 2018年第16期1538-1549,共12页
金属-有机框架(MOFs)材料具有易制备、易修饰、高孔隙率、大比表面积、多化学活性位点、可调孔径大小等优点,已被广泛应用于能源储存与转化相关领域.本文介绍了MOFs直接作为锂离子电池负极材料的研究现状,同时重点综述了MOFs衍生材料(... 金属-有机框架(MOFs)材料具有易制备、易修饰、高孔隙率、大比表面积、多化学活性位点、可调孔径大小等优点,已被广泛应用于能源储存与转化相关领域.本文介绍了MOFs直接作为锂离子电池负极材料的研究现状,同时重点综述了MOFs衍生材料(多孔碳、过渡金属氧化物、金属氧化物/碳质复合材料、金属/金属氧化物)的制备方法及其在锂离子电池负极中的应用,提出了此类材料作为锂离子电池负极材料需要重视的问题和面临的挑战.通过高温煅烧或者可控的化学反应等方法,MOFs材料可以简单方便地转化为传统的无机功能材料(金属化合物或碳).这些材料具有结构可调和化学成分多样化等优点,可以进一步提升电化学性能.最后,展望例如MOFs衍生材料在电化学储能和转换的发展方向和应用前景,为定向合成此类材料在电化学方面的应用提供有意义的实验基础和理论价值. 展开更多
关键词 金属-有机框架 锂离子电池 负极 储锂
原文传递
金属-有机框架在锂离子电池正极材料中的应用 被引量:1
13
作者 周健恩 陈跃颖 +2 位作者 盘盈滢 林晓明 袁中直 《科学通报》 EI CAS CSCD 北大核心 2020年第25期2740-2751,共12页
金属-有机框架(MOFs)材料具有容易制备、高孔隙率、容量大、种类丰富等优点,在能源储存和转化领域受到广泛关注,是合成高性能电极材料的潜在模板.本文介绍MOFs直接应用于锂离子电池正极材料的研究进展,重点综述了MOFs衍生材料(硫化物、... 金属-有机框架(MOFs)材料具有容易制备、高孔隙率、容量大、种类丰富等优点,在能源储存和转化领域受到广泛关注,是合成高性能电极材料的潜在模板.本文介绍MOFs直接应用于锂离子电池正极材料的研究进展,重点综述了MOFs衍生材料(硫化物、氟化物、聚阴离子型化合物或锂的过渡金属酸盐)的制备方法,及其在锂离子电池正极中的应用.最后总结MOFs及其衍生材料在锂离子电池正极材料的应用方向及发展前景,为新型电极材料的开发提供参考经验. 展开更多
关键词 金属-有机框架材料 锂离子电池 正极 电化学性能
原文传递
Stochastic Dynamic Economic Dispatch of Wind-integrated Electricity and Natural Gas Systems Considering Security Risk Constraints 被引量:11
14
作者 Zexing Chen Gelan Zhu +4 位作者 Yongjun Zhang Tianyao Ji Ziwen Liu xiaoming lin Zexiang Cai 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第3期324-334,共11页
As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which of... As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which offers a new approach to accommodate surplus wind power,is an excellent way to solve the former.Hence,this paper proposes to involve power-to-gas technology in the integrated electricity and natural gas systems(IEGSs).To solve the latter,on one hand,a new indicator,the scale factor of wind power integration,is introduced into the wind power stochastic model to better describe the uncertainty of grid-connected wind power;on the other hand,for quantizing and minimizing the impact of the uncertainties of wind power and system loads on system security,security risk constraints are established for the IEGS by the conditional value-at-risk method.By considering these two aspects,an MILP formulation of a security-risk based stochastic dynamic economic dispatch model for an IEGS is established,and GUROBI obtained from GAMS is used for the solution.Case studies are conducted on an IEGS consisting of a modified IEEE 39-bus system and the Belgium 20-node natural gas system to examine the effectiveness of the proposed dispatch model. 展开更多
关键词 High wind power penetration integrated electricity and natural gas system(IEGS) power-to-gas security risk constraint
原文传递
Recent progress in Co-based metal-organic framework derivatives for advanced batteries 被引量:6
15
作者 Jianen Zhou Qingyun Yang +6 位作者 Qiongyi Xie Hong Ou xiaoming lin Akif Zeb Lei Hu Yongbo Wu Guozheng Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第1期262-284,共23页
To date,Co-based metal-organic frameworks(Co-MOFs)have drawn much attention owing to their advantages of easy preparation,high porosity and adjustable structure.Because of these enticing properties,numerous efforts ha... To date,Co-based metal-organic frameworks(Co-MOFs)have drawn much attention owing to their advantages of easy preparation,high porosity and adjustable structure.Because of these enticing properties,numerous efforts have been devoted to their applications in energy storage and conversion.However,poor conductivity has become one of the biggest obstacles for large-scale use of pristine Co-MOFs.Subsequently,many attempts have been carried out to develop various Co-MOF derived materials as electrodes for rechargeable batteries in order to address the above-mentioned shortcoming and to enhance the electrical conductivity with improved stability during cycling.Moreover,in addition to improvement of Li-ion batteries in practical utilization,seeking for other rechargeable batteries is another urgent task due to the high cost and limited sources of metallic Li.Herein,by following the recent research progress,this review provides an overview of applications of Co-MOF derived materials in various rechargeable batteries including lithium-ion batteries,sodium-ion batteries,lithium-sulfur batteries,zinc air batteries and other rechargeable batteries,where they have been utilized as cathodes,anodes,separators and electrocatalysts.Accordingly,we categorize and compare the morphology driven electrochemical performance of various Co-MOF derivatives including porous carbon,cobalt oxides,cobalt chalcogenides,cobalt phosphides and corresponding composites.Finally,current challenges for large-scale production and commercialization of Co-MOF derived materials as well as some reasonable solutions have been discussed at the end. 展开更多
关键词 Co-based metal-organic frameworks DERIVATIVES ELECTRODES Rechargeable batteries
原文传递
Construction of cobalt vacancies in cobalt telluride to induce fast ionic/electronic diffusion kinetics for lithium-ion half/full batteries 被引量:2
16
作者 Lei Hu lin Li +4 位作者 Yuyang Zhang Xiaohong Tan Hao Yang xiaoming lin Yexiang Tong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第32期124-132,共9页
Designing novel electrode materials with unique structures is of great significance for improving the performance of lithium ion batteries(LIBs).Herein,copper-doped Co_(1-x)Te@nitrogen-doped carbon hollow nanoboxes(Cu... Designing novel electrode materials with unique structures is of great significance for improving the performance of lithium ion batteries(LIBs).Herein,copper-doped Co_(1-x)Te@nitrogen-doped carbon hollow nanoboxes(Cu-Co_(1-x)Te@NC HNBs)have been fabricated by chemical etching of Cu Co-ZIF nanoboxes,followed by a successive high-temperature tellurization process.The as-synthesized Cu-Co_(1-x)Te@NC HNBs composite demonstrated faster ionic and electronic diffusion kinetics than the pristine Co Te@NC HNBs electrode.The existence of Co-vacancy promotes the reduction of Gibbs free energy change(ΔG_(H^(*)))and effectively improves the Li~+diffusion coefficient.XPS and theoretical calculations show that performance improvement is ascribed to the electronic interactions between Cu-Co_(1-x)Te and nitrogen-doped carbon(NC)that trigger the shift of the p-band towards facilitation of interfacial charge transfer,which in turn helps boost up the lithium storage property.Besides,the proposed Cu-doping-induced Co-vacancy strategy can also be extended to other conversion-type cobalt-based material(CoSe_(2))in addition to asobtained Cu-Co_(1-x)Se_(2)@NC HNBs anodes for long-life and high-capacity LIBs.More importantly,the fabricated LiCoO_(2)//Cu-Co_(1-x)Te@NC HNBs full cell exhibits a high energy density of 403 Wh kg^(-1)and a power density of 6000 W kg^(-1).We show that the energy/power density reported herein is higher than that of previously studied cobalt-based anodes,indicating the potential application of Cu-Co_(1-x)Te@NC HNBs as a superior electrode material for LIBs. 展开更多
关键词 MOF-derived material Cobalt telluride Cobalt vacancy Diffusion kinetics Lithium storage
原文传递
Metal–Organic Frameworks and Their Derivatives as Cathodes for Lithium‑Ion Battery Applications:A Review 被引量:2
17
作者 R.Chenna Krishna Reddy xiaoming lin +1 位作者 Akif Zeb Cheng‑Yong Su 《Electrochemical Energy Reviews》 SCIE EI 2022年第2期312-347,共36页
The development of energy storage technology is important for resolving the issues and challenges of utilizing sustainable green energy in modern-day society.As an emerging technology,lithium-ion batteries(LIBs)are a ... The development of energy storage technology is important for resolving the issues and challenges of utilizing sustainable green energy in modern-day society.As an emerging technology,lithium-ion batteries(LIBs)are a common source of power for a wide variety of electronic devices,and major advances require the development and exploitation of new electrode materials;thus,fundamental knowledge of their atomic and nanoscale properties is necessary.By moving beyond conven-tional cathode candidates,metal–organic frameworks(MOFs)chemistry provides an excellent direction for designing and developing promising high-performance cathode materials for use in LIBs.Here,we carry out an overarching discussion on the development and application of MOFs and their derivatives as cathodes for lithium-ion battery applications.A timely overview of the exciting progress of MOFs as well as MOF-derived metallic components is highlighted.The unique char-acteristics of MOFs,such as their large surface area,high tunable porosity with uniform pore size,unique structural and morphological features,controllable framework composition and low densities,combine together to provide good interfacial charge transport properties and short diffusion lengths for electrons and/or ions that adequately support electrochemical redox reactions.The progress of MOFs and their derived composites as cathode candidates for LIBs is emphasized based on their electrochemical results,while also discussing the remaining issues and potential upcoming research directions. 展开更多
关键词 MOFs and their derived derivatives Li-ion batteries Cathodes Lithium storage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部