Laser in situ keratomileusis(LASIK)is a relatively new ophthalmic procedure in refractive surgery.It involves the use of a microkeratome to create a thin corneal flap followed by excimer laser ablation of the corneal ...Laser in situ keratomileusis(LASIK)is a relatively new ophthalmic procedure in refractive surgery.It involves the use of a microkeratome to create a thin corneal flap followed by excimer laser ablation of the corneal stroma and repositioning of the flap.However,complications are bound to occur when a surgical procedure is performed with increasing frequency.In some cases,serious complications such as keratectasia occurred.Risk factors for corneal keratectasia include a thin cornea at baseline,thick corneal flap,excessive ablation,irregular corneal thickness,diverse ablation rates,preexisting keratoconus or form fruste keratoconus,and high intraocular pressure(IOP)~[1].It is evident from incisional refractive surgery that the cornea is not mechanically inert.The mechanical environment of the central corneal tissue is also altered un-展开更多
The chemical stability of cefixime was determined by high-performance liquid chromatography (HPLC) under different conditions, including factors such as pH, solvents, initial concentration, temperature and additives...The chemical stability of cefixime was determined by high-performance liquid chromatography (HPLC) under different conditions, including factors such as pH, solvents, initial concentration, temperature and additives. The degradation process follows the first-order kinetics. A pH-rate profile exhibits the U-shape and shows the maximum stability of cefixime at pH = 6. The stability in different pure solvents is ranked as acetone 〉 ethanol 〉 methanol 〉 water, while the degradation rate of cefixime exists a maximum at the ratio of 0.6 in water + methanol mixtures. In addition, the degradation rate increases with the temperature increasing and the activation energy of degradation was found to be 27.078 kJ. mol- 1 in acetone + water mixed solvents. The addition of different additives was proven to either inhibit or accelerate the degradation. The degradation products were analyzed using HPLC, LC-MS and infrared spectroscopy, and the possible degradation pathways in acid as well as alkaline environment were proposed to help us understand the degradation behavior of cefixime.展开更多
Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent...Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent semantic information in the research of SCC-based networks.In previous research,researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification.However,the content of semantic information is quite complex.Although graph convolutional neural networks provide an effective solution for node classification tasks,due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures,the extracted feature information is subject to varying degrees of loss.Therefore,this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network.The Bidirectional Encoder Representations from Transformers(BERT)training word vector is introduced to extract the semantic features in the network,and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network.A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification.We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.展开更多
In this study, we sought to elucidate the process of DNA degradation in brain and dental pulp cells of mice, within postmortem 0-72 hours, by using the single cell gel electrophoresis assay and professional comet imag...In this study, we sought to elucidate the process of DNA degradation in brain and dental pulp cells of mice, within postmortem 0-72 hours, by using the single cell gel electrophoresis assay and professional comet image analysis and processing techniques. The frequency of comet-like cells, the percentage of tail DNA, tail length, tail moment, Olive moment and tail area increased in tandem with increasing postmortem interval. In contrast, the head radius, the percentage of head DNA and head area showed a decreasing trend. Linear regression analysis revealed a high correlation between these parameters and the postmortem interval. The findings suggest that the single cell gel electrophoresis assay is a quick and sensitive method to detect DNA degradation in brain and dental pulp cells, providing an objective and accurate new way to estimate postmortem interval.展开更多
To explore the structure-activity connections of amphiphilic permeation enhancers containing the length of the hydrophobic chains as well as the properties of the polar head,O-acylgeraniol and O-acylnerol derivatives ...To explore the structure-activity connections of amphiphilic permeation enhancers containing the length of the hydrophobic chains as well as the properties of the polar head,O-acylgeraniol and O-acylnerol derivatives were synthesized from geraniol/nerol(cis-isomer of geraniol) and pharmaceutical excipient acids in this research. Their promotion of the percutaneous absorption of three drugs as the model, flurbiprofen(FP), isosorbide dinitrate(ISDN) and donepezil(DNP), which were selected based on their physicochemical properties,was tested by in vitro skin penetration and in vivo. Molecular simulation, ATR-FTIR, CLSM and histological observation were implement to evaluate the mode of action of the enhancers.The results indicated that(E)-3,7-dimethyl-2,6-octadien-1-yl tetradecanoate(GER-C14, trans-)achieved the highest enhancement ability for the three drugs;additionally, the in vivo results obtained were in good correlation with the in vitro data. Molecular docking results suggested that enhancers loosen the hydrogen bonds between ceramides, and the results of molecular simulation indicated that GER-C14, NER-C14 could insert into the middle of the lipid bilayer to form an independent phase. According to ATR-FTIR and histological evaluation, the enhancers extracted lipids and influenced the protein region, thereby disturbing the skin array. In addition, CLSM described the dynamic effects of enhancers on lipids between stratum corneum(SC) cells. In conclusion, GER-C14 had a better penetration promotion effect, which broadened our understanding of stereoisomeric penetration enhancers.展开更多
Mechanical stimuli play an essential role in maintaining bone remodeling and skeletal integrity.Meanwhile,bone can respond to the changes of mechanical condition to adjust its mass and architecture.Clinical studies di...Mechanical stimuli play an essential role in maintaining bone remodeling and skeletal integrity.Meanwhile,bone can respond to the changes of mechanical condition to adjust its mass and architecture.Clinical studies discover that bedridden patients showed osteoporotic T-scores and low bone mineral density,and long-term immobilized patients presented reduced markers of bone formation.However,as bone formation mediated by osteoblast differentiation is a complex process,the underlying molecular mechanism of mechanical stimuli regulating bone formation is still unclear.Recent evidences show that microRNAs(miRNAs)are involved in mechanical stimuli regulating bone formation or osteoblast differentiation.Nevertheless,no direct evidence identifies mechanoresponsive miRNA in both human and animal bones,and clarifies its mechanoresponsive role under different mechanical conditions(e.g.mechanical unloading,reloading,loading).In the current study,we screened for differentially expressed miRNAs in bone specimens of bedridden patients with fractures,then identified that the expression of miR-138-5p,but not the other miRNAs,altered withbedridden time and was negatively correlated with the expression of the bone formation marker genes Alp(alkaline phosphatase).Moreover,miR-138-5p was up-regulated with reduced bone formation during unloading and down-regulated with increased bone formation during reloading in hind4imb unloaded mice.In addition,miR-138-5p was verified to be responsive to different mechanical unloading condition and cyclic mechanical stretch condition in primary osteogenic cells,respectively.Further in vitro data suggested that mechanoresponsive miR-138-5p directly targeted microtubule actin crosslinking factor 1(MACF1)to inhibit osteoblast differentiation.In vivo,we constructed an osteoblastic miR-138-5p transgenic mice model(TG138)with the Runx2promoter,and found that overexpression miR-138-5p supressed bone formation.Moreover,osteoblast-targeted inhibition of miR-138-5p sensitized bone anabolic response to mechanical loading in TG138 mice.Predominantly,the osteoblast-targeted inhibition of miR-138-5p could counteract bone formation reduction induced by hind limb unloading.Taken together,the mechanoresponsive miR-138-5p inhibited bone anabolic response for developing a novel bone anabolic sensitization strategy.展开更多
Fresh-seed germination(FSG)impairs peanut production,especially in areas where the peanut harvest season coincides with rainy weather.Developing FSG-resistant cultivars by molecular breeding is expected to mitigate yi...Fresh-seed germination(FSG)impairs peanut production,especially in areas where the peanut harvest season coincides with rainy weather.Developing FSG-resistant cultivars by molecular breeding is expected to mitigate yield loss and quality impairment caused by FSG.However,the genetic control of FSG awaits elucidation.In this study,FSG at 1,3,5,7,and 9 days post-imbibition in three environments were tested,and quantitative-trait loci(QTL)associated with FSG were mapped in a peanut recombinant inbred line population by leveraging existing high-density peanut genetic maps.Of 24 QTL identified in 13 linkage groups,qFSGA04 was a stable major QTL on linkage group 04(LG04).It was consistently detected in five germination stages and three environments.By designing and validating DNA markers in the confidence interval of qFSGA04,we identified one single-nucleotide polymorphism and one In Del closely associated with FSG that could be used as linked markers for FSG resistance in peanut breeding.展开更多
The reference values of serum perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations were evaluated based on the human blood samples collected from Kashi, Xinjiang. And human serum samples of fa...The reference values of serum perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations were evaluated based on the human blood samples collected from Kashi, Xinjiang. And human serum samples of family members from Liaoning were evaluated for levels of PFOS and PFOA with the purpose to compare exposure pathways for family members. Among the 110 blood specimens from Kashi, the detection frequency of PFOS and PFOA was 93% and 6%, respectively. Reference values of serum PFOS, evaluated as the 90th percentiles of the concentrations, were determined to be 6.44 μg/L. Significant positive correlations were observed for serum levels of PFOS and PFOA among family members in Liaoning. Specially, stronger correlation between mother and offspring was observed than that between father and offspring. And stronger correlation of serum PFOS and PFOA levels was observed among fam- ily members in rural areas than those in big and small-medium cities. Difference in the association of serum PFOS and PFOA level among family members suggested that exposure in the outdoor and working environment of different oc- cupations should be evaluated. Present study provides reference values for exposure assessment in China and potential pathways of human exposure to PFOS and PFOA.展开更多
With the accelerating process of interest rate marketization, the local banks in Henan Province face a greater risk of interest rate marketization, managing risk effectively can promote the development of local banks ...With the accelerating process of interest rate marketization, the local banks in Henan Province face a greater risk of interest rate marketization, managing risk effectively can promote the development of local banks in Henan Province and the economic development of Henan Province. This paper analyzes the present situation of management of interest rate marketization in Henan Province, then puts forward some suggestions, such as promoting the development of intermediate business; promoting the product innovation; strengthening the management of assets and liabilities, improving the quality of employees, strengthening the management of non-performing loans, and etc.展开更多
The standard epoxy resin curing agents revealed are from unsustainable petroleum-based sources,which produce poisonous exhaust when cured.Amino acids,a bio-based epoxy curing agent with amino and carboxyl groups,are a...The standard epoxy resin curing agents revealed are from unsustainable petroleum-based sources,which produce poisonous exhaust when cured.Amino acids,a bio-based epoxy curing agent with amino and carboxyl groups,are another potential curing agent.Water-soluble epoxy resins cured with lysine(Lys),glutamic acid(Glu),leucine(Leu),and serine(Ser)as amino acids were inves-tigated.The results showed that the water-soluble epoxy resin(glycerol epoxy resins,GER)was cured with Lys and Glu after reacting.Fourier transform infrared(FT-IR)spectroscopic analysis of the GER-Lys showed that the amino and carboxyl groups of Lys primarily reacted with the epoxy groups of GER.The elongation at break of Lys-cured GER(GER-Lys)cured at 70℃ with a molar ratio of 1꞉0.75 was 75.32%.The fact that elongations at break of GER-Lys(79.43%)were higher than those of GER-Glu(17.33%),respectively supports the decrease of crosslinking density by the amino acid-cured GER reaction.The potential of Lys and Glu alternatives for petrochemical amines is demonstrated and provides promising opportunities for industrial application.展开更多
Soil metabolomics is an emerging approach for profiling diverse small molecule metabolites,i.e.,metabolomes,in the soil.Soil metabolites,including fatty acids,amino acids,lipids,organic acids,sugars,and volatile organ...Soil metabolomics is an emerging approach for profiling diverse small molecule metabolites,i.e.,metabolomes,in the soil.Soil metabolites,including fatty acids,amino acids,lipids,organic acids,sugars,and volatile organic compounds,often contain essential nutrients such as nitrogen,phosphorus,and sulfur and are directly linked to soil biogeochemical cycles driven by soil microorganisms.This paper presents an overview of methods for analyzing soil metabolites and the state-of-the-art of soil metabolomics in relation to soil nutrient cycling.We describe important applications of metabolomics in studying soil carbon cycling and sequestration,and the response of soil organic pools to changing environmental conditions.This includes using metabolomics to provide new insights into the close relationships between soil microbiome and metabolome,as well as responses of soil metabolome to plant and environmental stresses such as soil contamination.We also highlight the advantage of using soil metabolomics to study the biogeochemical cycles of elements and suggest that future research needs to better understand factors driving soil function and health.展开更多
VECTOR EFFECT OF MICROPLASTIC PARTICLES.The microplastic pollution issue is infamous for its enormous multidimensionality and the intricate combination arising from plastics themselves and“plasticassociated chemicals...VECTOR EFFECT OF MICROPLASTIC PARTICLES.The microplastic pollution issue is infamous for its enormous multidimensionality and the intricate combination arising from plastics themselves and“plasticassociated chemicals.”Interactions between microplastic particles with multiple chemicals can affect biological health and alter the toxicity of the primary environmental pollutants.These complex combinations raise great challenges to experimental design for toxicity evaluation,going beyond the investigation of individual or dual contaminations.Systematic research and an integrated visualization strategy are needed to decipher these biochemical processes and molecular mechanisms.1,2.展开更多
Silicon(Si)is one of the most promising anodes for enabling all-solid-state batteries(ASSBs)with high energy density and safety.However,the tremendous volume change and sluggish kinetics result in poor electrochemical...Silicon(Si)is one of the most promising anodes for enabling all-solid-state batteries(ASSBs)with high energy density and safety.However,the tremendous volume change and sluggish kinetics result in poor electrochemical performance.Herein,we proposed an ionic/electronic dual-conductive material of Li_(x)Si as a diffusion-rapid and all-active anode for ASSBs.Compared with pure Si anode,the as-fabricated Li_(x)Si showed dramatic promotions of 35 times electronic and 400 times ionic conductivities.The three-dimensional(3D)ionic-electronic transport system of Li_(x)Si enabled rapid kinetics and uniform volume change of electrode materials in the whole electrode,corresponding to a lower volumechange rate.As a result,the ASSBs with LiCoO_(2)cathode exhibited a reversible discharge capacity of 154.4 mAh g−1,corresponding to an initial Coulombic efficiency of 97.3%.Besides,the batteries delivered a high rate capacity of 99.3 mAh g^(−1)at 2 C and long-term cycle stability of 94.0%after 800 cycles at 1 C,which was much better than the pure Si anode.This study sheds light on a new understanding of the importance of ionic conductivity for Si-based anode and might help inspire the design of advanced anode materials for ASSBs.展开更多
Silicosis is a leading cause of occupational disease-related morbidity and mortality worldwide,but the molecular basis underlying its development remains unclear.An accumulating body of evidence supports gasdermin D(G...Silicosis is a leading cause of occupational disease-related morbidity and mortality worldwide,but the molecular basis underlying its development remains unclear.An accumulating body of evidence supports gasdermin D(GSDMD)-mediated pyroptosis as a key component in the development of various pulmonary diseases.However,there is little experimental evidence connecting silicosis and GSDMD-driven pyroptosis.In this work,we investigated the role of GSDMD-mediated pyroptosis in silicosis.Single-cell RNA sequencing of healthy and silicosis human and murine lung tissues indicated that GSDMD-induced pyroptosis in macrophages was relevant to silicosis progression.Through microscopy we then observed morphological alterations of pyroptosis in macrophages treated with silica.Measurement of interleukin-1βrelease,lactic dehydrogenase activity,and real-time propidium iodide staining further revealed that silica induced pyroptosis of macrophages.Additionally,we verified that both canonical(caspase-1-mediated)and non-canonical(caspase-4/5/11-mediated)signaling pathways mediated silica-induced pyroptosis activation,in vivo and in vitro.Notably,Gsdmd knockout mice exhibited dramatically alleviated silicosis phenotypes,which highlighted the pivotal role of pyroptosis in this disease.Taken together,our results demonstrated that macrophages underwent GSDMD-dependent pyroptosis in silicosis and inhibition of this process could serve as a viable clinical strategy for mitigating silicosis.展开更多
Ophiocordyceps sinensis is well known as a traditional Chinese medicine and has widely been used for over 2,000 years to stimulate immune system, decrease blood pressure and to inhibit tumor growth. While miRNAs are i...Ophiocordyceps sinensis is well known as a traditional Chinese medicine and has widely been used for over 2,000 years to stimulate immune system, decrease blood pressure and to inhibit tumor growth. While miRNAs are increasingly recognized for their roles in post-transcriptional regulation of gene expression in animals and plants, miRNAs in fungi were less studied until the discovery of microRNA-like RNA(milRNA). High-throughput sequencing and bioinformatics approaches were used to identify conserved and novel milRNAs in O. sinensis. 40 conserved milRNAs were identified, while 23 pre-miRNA candidates encoding 31 novel milRNAs were predicted. Furthermore, the potential target genes of milRNAs in human were predicted and gene ontology analysis was applied to these genes. Enrichment analysis of GO-represented biological process showed that target genes of both conserved and novel milRNAs are involved in development, metabolic and immune processes, indicating the potential roles of milRNAs of O. sinensis in pharmacological effects as health food and traditional Chinese medicine. This study is the first report on genome-wide analysis of milRNAs in O. sinensis and it provides a useful resource to further study the potential roles of milRNAs as active components of O. sinensis in health food or traditional Chinese medicine.展开更多
In this work, we developed a polyaniline (PANI)-coated selenium/carbon nanocomposite encapsulated in graphene sheets (PANI@Se/C-G), with excellent performance in Li-Se batteries. The PANI@Se/C-G nanostructure pres...In this work, we developed a polyaniline (PANI)-coated selenium/carbon nanocomposite encapsulated in graphene sheets (PANI@Se/C-G), with excellent performance in Li-Se batteries. The PANI@Se/C-G nanostructure presents attractive properties as cathode of Li-Se batteries, with a high specific capacity of 588.7 mAh·g^-1 at a 0.2C (1C = 675 mA·g^-1) rate after 200 cycles. Even at a high rate of 2C, a high capacity of 528.6 mAh·g^-1 is obtained after 500 cycles. The excellent cycle stability and rate performance of the PANI@Se/C-G composite can be attributed to the synergistic combination of carbon black (as the conductive matrix for Se) and the double conductive layer comprising the uniform PANI shell and the graphene sheets, which effectively improves the utilization of selenium and significantly enhances the electronic conductivity of the whole electrode.展开更多
Recently,sulfide-based solid-state electrolytes(SSEs)have attracted much attention owing to their high ionic conductivity and feasible mechanical features.The environmental stability of sulfide-based SSEs is one of th...Recently,sulfide-based solid-state electrolytes(SSEs)have attracted much attention owing to their high ionic conductivity and feasible mechanical features.The environmental stability of sulfide-based SSEs is one of the critical aspects due to the possible decomposition,and ionic conductivity change will affect the fabrication and electrochemical performance of the batteries.Thus,important efforts have been made to reveal and improve their environmental stability,and a timely summary of the progress is urgently needed.In this review,we first clarify the definition of environmental stability and its significance in the context of practical use.After indicating the degradation mechanisms of sulfide-based SSEs,we summarize several effective strategies to improve their stability and also highlight the related theoretical studies.The stability of organic solvents of sulfide SSEs is also summarized and discussed,which may help reliable sulfide SSEs in the battery system.The main target of this review is to gain insights and provide useful guidance to further improve the environmental stability of sulfide SSEs,which will finally promote the commercialization of sulfide-based all-solid-state batteries.展开更多
Automated chemical solid-phase synthesis is an automation platform for rapid and reliable synthesis of glycans.Since the seminal work of Automated Glycan Assembly(AGA)disclosed by Seeberger in 2001,AGA has evolved fro...Automated chemical solid-phase synthesis is an automation platform for rapid and reliable synthesis of glycans.Since the seminal work of Automated Glycan Assembly(AGA)disclosed by Seeberger in 2001,AGA has evolved from a proof-of-concept to a robust and reliable technology for streamlined production of various types of glycans.Through more than 20 years of unceasing efforts,the major breakthroughs in AGA including linkers,approved building blocks,and synthesizers have been acquired,and numerous influential achievements have been made in complex glycan synthesis.In addition,the HPLC-assisted automated synthesis emerges as a promising automation platform to access glycans.In this review,we highlight the key advances in the field of automated chemical solid-phase synthesis,especially in AGA.The synthesis of representative glycans based on AGA is also described.展开更多
Drought can greatly impact the biodiversity of an ecosystem and play a crucial role in regulating its functioning.However,the specific mechanisms by which drought mediate the biodiversity effect(BE)on community biomas...Drought can greatly impact the biodiversity of an ecosystem and play a crucial role in regulating its functioning.However,the specific mechanisms by which drought mediate the biodiversity effect(BE)on community biomass in above-and belowground through functional traits remain poorly understood.Here,we conducted a common garden experiment in a greenhouse,which included two plant species richness levels and two water addition levels,to analyze the effects of biodiversity on aboveground biomass(AGB),belowground biomass(BGB)and total biomass(TB),and to quantify the relationship between BEs and functional traits under drought conditions.Our analysis focused on partitioning BEs into above-and belowground complementarity effect(CE)and selection effect(SE)at the species level,which allowed us to better understand the impacts of biodiversity on community biomass and the underlying mechanisms.Our results showed that plant species richness stimulated AGB,BGB and TB through CEs.Drought decreased AGB,BGB and TB,simultaneously.In addition,the aboveground CE was positively associated with the variation in plant height.SEs in above-and belowground were negatively correlated with the community mean plant height and root length,respectively.Furthermore,drought weakened the aboveground CE by decreasing variation in plant height,resulting in a reduction in AGB and TB.Our findings demonstrate that the complementarity of species is an important regulator of community biomass in above-and belowground,the dynamics of biomass under environmental stress are associated with the response of sensitive compartments.展开更多
The coordinated development of tourism resources and tourism economy is vital improve the quality and efficiency of regional tourism.Taking the ice and snow tourism in Altay region as an example,this study constructed...The coordinated development of tourism resources and tourism economy is vital improve the quality and efficiency of regional tourism.Taking the ice and snow tourism in Altay region as an example,this study constructed an evaluation indicator system and used the methods of gravity center model,spatial mismatch index model and obstacle degree model to calculate the spatial mismatch index and influencing factors of ice and snow tourism resources and tourism economy in Altay region as a whole and in each county and city.It found in the study period:(i)the ice and snow tourism resources and tourism economy in Altay region was synchronous in the development of time sequence,while the spatial distribution pattern was characterized by regional imbalance;(ii)at the macro scale,the spatial mismatch degree of the ice-snow tourism resource center and the tourism economic center in Altay region was gradually reduced,but they were always separated from the spatial geometric center of Altay region;(iii)at the micro scale,the spatial mismatch index of counties and cities in Altay region was mainly negative mismatch,and the types of spatial mismatch changed in different degrees;(iv)the factors showed certain spatial differentiation characteristics in different counties of Altay region,and there were some differences in the obstacles of different mismatch level areas,and the economic basis was the most frequent obstacle in different mismatch level areas of Altay region.展开更多
基金supported by the National Natural Science Foundation of China(11032008)Natural Science Foundation of Shanxi Province(2012011046-2)
文摘Laser in situ keratomileusis(LASIK)is a relatively new ophthalmic procedure in refractive surgery.It involves the use of a microkeratome to create a thin corneal flap followed by excimer laser ablation of the corneal stroma and repositioning of the flap.However,complications are bound to occur when a surgical procedure is performed with increasing frequency.In some cases,serious complications such as keratectasia occurred.Risk factors for corneal keratectasia include a thin cornea at baseline,thick corneal flap,excessive ablation,irregular corneal thickness,diverse ablation rates,preexisting keratoconus or form fruste keratoconus,and high intraocular pressure(IOP)~[1].It is evident from incisional refractive surgery that the cornea is not mechanically inert.The mechanical environment of the central corneal tissue is also altered un-
基金Supported by the National Natural Science Foundation of China(81361140344 and21376164)National High Technology Reseach and Development Program of China(863Program,2015AA021002)Major National Scientific Instrument Development Project(21527812)
文摘The chemical stability of cefixime was determined by high-performance liquid chromatography (HPLC) under different conditions, including factors such as pH, solvents, initial concentration, temperature and additives. The degradation process follows the first-order kinetics. A pH-rate profile exhibits the U-shape and shows the maximum stability of cefixime at pH = 6. The stability in different pure solvents is ranked as acetone 〉 ethanol 〉 methanol 〉 water, while the degradation rate of cefixime exists a maximum at the ratio of 0.6 in water + methanol mixtures. In addition, the degradation rate increases with the temperature increasing and the activation energy of degradation was found to be 27.078 kJ. mol- 1 in acetone + water mixed solvents. The addition of different additives was proven to either inhibit or accelerate the degradation. The degradation products were analyzed using HPLC, LC-MS and infrared spectroscopy, and the possible degradation pathways in acid as well as alkaline environment were proposed to help us understand the degradation behavior of cefixime.
基金supported by National Natural Science Foundation of China(62101088,61801076,61971336)Natural Science Foundation of Liaoning Province(2022-MS-157,2023-MS-108)+1 种基金Key Laboratory of Big Data Intelligent Computing Funds for Chongqing University of Posts and Telecommunications(BDIC-2023-A-003)Fundamental Research Funds for the Central Universities(3132022230).
文摘Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent semantic information in the research of SCC-based networks.In previous research,researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification.However,the content of semantic information is quite complex.Although graph convolutional neural networks provide an effective solution for node classification tasks,due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures,the extracted feature information is subject to varying degrees of loss.Therefore,this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network.The Bidirectional Encoder Representations from Transformers(BERT)training word vector is introduced to extract the semantic features in the network,and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network.A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification.We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.
基金supported by Key Research Plan of the Ministry of Public Security of China, No. 2011ZDYJXJXY005Scientific Research Foundation of the Higher Education Institutions of Liaoning Province, China, No. 2008Z205
文摘In this study, we sought to elucidate the process of DNA degradation in brain and dental pulp cells of mice, within postmortem 0-72 hours, by using the single cell gel electrophoresis assay and professional comet image analysis and processing techniques. The frequency of comet-like cells, the percentage of tail DNA, tail length, tail moment, Olive moment and tail area increased in tandem with increasing postmortem interval. In contrast, the head radius, the percentage of head DNA and head area showed a decreasing trend. Linear regression analysis revealed a high correlation between these parameters and the postmortem interval. The findings suggest that the single cell gel electrophoresis assay is a quick and sensitive method to detect DNA degradation in brain and dental pulp cells, providing an objective and accurate new way to estimate postmortem interval.
基金The Natural Science Foundation of Hebei Province [grant numbers H2019209254]North China University of Science and Technology Foundation for Distinguished Young Scholars[grant numbers JQ201713]Distinguished Young Scholars of Hebei Province。
文摘To explore the structure-activity connections of amphiphilic permeation enhancers containing the length of the hydrophobic chains as well as the properties of the polar head,O-acylgeraniol and O-acylnerol derivatives were synthesized from geraniol/nerol(cis-isomer of geraniol) and pharmaceutical excipient acids in this research. Their promotion of the percutaneous absorption of three drugs as the model, flurbiprofen(FP), isosorbide dinitrate(ISDN) and donepezil(DNP), which were selected based on their physicochemical properties,was tested by in vitro skin penetration and in vivo. Molecular simulation, ATR-FTIR, CLSM and histological observation were implement to evaluate the mode of action of the enhancers.The results indicated that(E)-3,7-dimethyl-2,6-octadien-1-yl tetradecanoate(GER-C14, trans-)achieved the highest enhancement ability for the three drugs;additionally, the in vivo results obtained were in good correlation with the in vitro data. Molecular docking results suggested that enhancers loosen the hydrogen bonds between ceramides, and the results of molecular simulation indicated that GER-C14, NER-C14 could insert into the middle of the lipid bilayer to form an independent phase. According to ATR-FTIR and histological evaluation, the enhancers extracted lipids and influenced the protein region, thereby disturbing the skin array. In addition, CLSM described the dynamic effects of enhancers on lipids between stratum corneum(SC) cells. In conclusion, GER-C14 had a better penetration promotion effect, which broadened our understanding of stereoisomeric penetration enhancers.
基金supported by the National Natural Science Foundation of China ( 31570940,81772017)
文摘Mechanical stimuli play an essential role in maintaining bone remodeling and skeletal integrity.Meanwhile,bone can respond to the changes of mechanical condition to adjust its mass and architecture.Clinical studies discover that bedridden patients showed osteoporotic T-scores and low bone mineral density,and long-term immobilized patients presented reduced markers of bone formation.However,as bone formation mediated by osteoblast differentiation is a complex process,the underlying molecular mechanism of mechanical stimuli regulating bone formation is still unclear.Recent evidences show that microRNAs(miRNAs)are involved in mechanical stimuli regulating bone formation or osteoblast differentiation.Nevertheless,no direct evidence identifies mechanoresponsive miRNA in both human and animal bones,and clarifies its mechanoresponsive role under different mechanical conditions(e.g.mechanical unloading,reloading,loading).In the current study,we screened for differentially expressed miRNAs in bone specimens of bedridden patients with fractures,then identified that the expression of miR-138-5p,but not the other miRNAs,altered withbedridden time and was negatively correlated with the expression of the bone formation marker genes Alp(alkaline phosphatase).Moreover,miR-138-5p was up-regulated with reduced bone formation during unloading and down-regulated with increased bone formation during reloading in hind4imb unloaded mice.In addition,miR-138-5p was verified to be responsive to different mechanical unloading condition and cyclic mechanical stretch condition in primary osteogenic cells,respectively.Further in vitro data suggested that mechanoresponsive miR-138-5p directly targeted microtubule actin crosslinking factor 1(MACF1)to inhibit osteoblast differentiation.In vivo,we constructed an osteoblastic miR-138-5p transgenic mice model(TG138)with the Runx2promoter,and found that overexpression miR-138-5p supressed bone formation.Moreover,osteoblast-targeted inhibition of miR-138-5p sensitized bone anabolic response to mechanical loading in TG138 mice.Predominantly,the osteoblast-targeted inhibition of miR-138-5p could counteract bone formation reduction induced by hind limb unloading.Taken together,the mechanoresponsive miR-138-5p inhibited bone anabolic response for developing a novel bone anabolic sensitization strategy.
基金supported by China Agriculture Research System(CARS-13)Henan Provincial Agriculture Research System,China(S2012-5)+1 种基金Major Science and Technology Projects of Henan Province(201300111000)the Henan Provincial R&D Projects of Interregional Cooperation for Local Scientific and Technological Development Guided by Central Government(YDZX20214100004191)。
文摘Fresh-seed germination(FSG)impairs peanut production,especially in areas where the peanut harvest season coincides with rainy weather.Developing FSG-resistant cultivars by molecular breeding is expected to mitigate yield loss and quality impairment caused by FSG.However,the genetic control of FSG awaits elucidation.In this study,FSG at 1,3,5,7,and 9 days post-imbibition in three environments were tested,and quantitative-trait loci(QTL)associated with FSG were mapped in a peanut recombinant inbred line population by leveraging existing high-density peanut genetic maps.Of 24 QTL identified in 13 linkage groups,qFSGA04 was a stable major QTL on linkage group 04(LG04).It was consistently detected in five germination stages and three environments.By designing and validating DNA markers in the confidence interval of qFSGA04,we identified one single-nucleotide polymorphism and one In Del closely associated with FSG that could be used as linked markers for FSG resistance in peanut breeding.
文摘The reference values of serum perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations were evaluated based on the human blood samples collected from Kashi, Xinjiang. And human serum samples of family members from Liaoning were evaluated for levels of PFOS and PFOA with the purpose to compare exposure pathways for family members. Among the 110 blood specimens from Kashi, the detection frequency of PFOS and PFOA was 93% and 6%, respectively. Reference values of serum PFOS, evaluated as the 90th percentiles of the concentrations, were determined to be 6.44 μg/L. Significant positive correlations were observed for serum levels of PFOS and PFOA among family members in Liaoning. Specially, stronger correlation between mother and offspring was observed than that between father and offspring. And stronger correlation of serum PFOS and PFOA levels was observed among fam- ily members in rural areas than those in big and small-medium cities. Difference in the association of serum PFOS and PFOA level among family members suggested that exposure in the outdoor and working environment of different oc- cupations should be evaluated. Present study provides reference values for exposure assessment in China and potential pathways of human exposure to PFOS and PFOA.
文摘With the accelerating process of interest rate marketization, the local banks in Henan Province face a greater risk of interest rate marketization, managing risk effectively can promote the development of local banks in Henan Province and the economic development of Henan Province. This paper analyzes the present situation of management of interest rate marketization in Henan Province, then puts forward some suggestions, such as promoting the development of intermediate business; promoting the product innovation; strengthening the management of assets and liabilities, improving the quality of employees, strengthening the management of non-performing loans, and etc.
基金funded by the National Key R&D Program of China(No.2022YFD2200105).
文摘The standard epoxy resin curing agents revealed are from unsustainable petroleum-based sources,which produce poisonous exhaust when cured.Amino acids,a bio-based epoxy curing agent with amino and carboxyl groups,are another potential curing agent.Water-soluble epoxy resins cured with lysine(Lys),glutamic acid(Glu),leucine(Leu),and serine(Ser)as amino acids were inves-tigated.The results showed that the water-soluble epoxy resin(glycerol epoxy resins,GER)was cured with Lys and Glu after reacting.Fourier transform infrared(FT-IR)spectroscopic analysis of the GER-Lys showed that the amino and carboxyl groups of Lys primarily reacted with the epoxy groups of GER.The elongation at break of Lys-cured GER(GER-Lys)cured at 70℃ with a molar ratio of 1꞉0.75 was 75.32%.The fact that elongations at break of GER-Lys(79.43%)were higher than those of GER-Glu(17.33%),respectively supports the decrease of crosslinking density by the amino acid-cured GER reaction.The potential of Lys and Glu alternatives for petrochemical amines is demonstrated and provides promising opportunities for industrial application.
基金supported by the Youth Innovation Promotion Association,CAS(2021309)the Natural Sciences and Engineering Research Council of Canada(NSERC,RGPIN-2018-05700)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28010501)the National Natural Science Foundation of China(42277303,42107244).
文摘Soil metabolomics is an emerging approach for profiling diverse small molecule metabolites,i.e.,metabolomes,in the soil.Soil metabolites,including fatty acids,amino acids,lipids,organic acids,sugars,and volatile organic compounds,often contain essential nutrients such as nitrogen,phosphorus,and sulfur and are directly linked to soil biogeochemical cycles driven by soil microorganisms.This paper presents an overview of methods for analyzing soil metabolites and the state-of-the-art of soil metabolomics in relation to soil nutrient cycling.We describe important applications of metabolomics in studying soil carbon cycling and sequestration,and the response of soil organic pools to changing environmental conditions.This includes using metabolomics to provide new insights into the close relationships between soil microbiome and metabolome,as well as responses of soil metabolome to plant and environmental stresses such as soil contamination.We also highlight the advantage of using soil metabolomics to study the biogeochemical cycles of elements and suggest that future research needs to better understand factors driving soil function and health.
基金supported by the National Natural Science Foundation of China(22176195,82127801,22104120,22376212,and 31901040)the National Key R&D Program of China(2022YFF0705003)+4 种基金the Guangdong Province Zhu Jiang Talents Plan(2021QN02Y028)the Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression(ZDSYS20220606100606014)the Shenzhen Medical Research Fund(D2301001)the Three Qin Talents Introduction Program for Youths of Shaanxi Province,the“Young Talent Support Plan”of Xi’an Jiaotong University,the Guangdong Science and Technology Department(2021B1212030004)Fundamental Research Funds for the Central Universities(xtr052023008).
文摘VECTOR EFFECT OF MICROPLASTIC PARTICLES.The microplastic pollution issue is infamous for its enormous multidimensionality and the intricate combination arising from plastics themselves and“plasticassociated chemicals.”Interactions between microplastic particles with multiple chemicals can affect biological health and alter the toxicity of the primary environmental pollutants.These complex combinations raise great challenges to experimental design for toxicity evaluation,going beyond the investigation of individual or dual contaminations.Systematic research and an integrated visualization strategy are needed to decipher these biochemical processes and molecular mechanisms.1,2.
基金This research was made possible as a result of a generous grant from the National Natural Science Foundation of China(NSFCgrant nos.22308303 and 12304029)+1 种基金Beijing Nova Program,China(grant no.20230484376)China First Auto Works(FAW)Group Corp.,Ltd.
文摘Silicon(Si)is one of the most promising anodes for enabling all-solid-state batteries(ASSBs)with high energy density and safety.However,the tremendous volume change and sluggish kinetics result in poor electrochemical performance.Herein,we proposed an ionic/electronic dual-conductive material of Li_(x)Si as a diffusion-rapid and all-active anode for ASSBs.Compared with pure Si anode,the as-fabricated Li_(x)Si showed dramatic promotions of 35 times electronic and 400 times ionic conductivities.The three-dimensional(3D)ionic-electronic transport system of Li_(x)Si enabled rapid kinetics and uniform volume change of electrode materials in the whole electrode,corresponding to a lower volumechange rate.As a result,the ASSBs with LiCoO_(2)cathode exhibited a reversible discharge capacity of 154.4 mAh g−1,corresponding to an initial Coulombic efficiency of 97.3%.Besides,the batteries delivered a high rate capacity of 99.3 mAh g^(−1)at 2 C and long-term cycle stability of 94.0%after 800 cycles at 1 C,which was much better than the pure Si anode.This study sheds light on a new understanding of the importance of ionic conductivity for Si-based anode and might help inspire the design of advanced anode materials for ASSBs.
基金supported by Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(CIFMSNos.2021-1-I2M-049 and 2018-I2M-1-001,China)+1 种基金the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(Nos.2019RC330001 and 2021RC310002,China)National Natural Science Foundation of China(No.82090010)。
文摘Silicosis is a leading cause of occupational disease-related morbidity and mortality worldwide,but the molecular basis underlying its development remains unclear.An accumulating body of evidence supports gasdermin D(GSDMD)-mediated pyroptosis as a key component in the development of various pulmonary diseases.However,there is little experimental evidence connecting silicosis and GSDMD-driven pyroptosis.In this work,we investigated the role of GSDMD-mediated pyroptosis in silicosis.Single-cell RNA sequencing of healthy and silicosis human and murine lung tissues indicated that GSDMD-induced pyroptosis in macrophages was relevant to silicosis progression.Through microscopy we then observed morphological alterations of pyroptosis in macrophages treated with silica.Measurement of interleukin-1βrelease,lactic dehydrogenase activity,and real-time propidium iodide staining further revealed that silica induced pyroptosis of macrophages.Additionally,we verified that both canonical(caspase-1-mediated)and non-canonical(caspase-4/5/11-mediated)signaling pathways mediated silica-induced pyroptosis activation,in vivo and in vitro.Notably,Gsdmd knockout mice exhibited dramatically alleviated silicosis phenotypes,which highlighted the pivotal role of pyroptosis in this disease.Taken together,our results demonstrated that macrophages underwent GSDMD-dependent pyroptosis in silicosis and inhibition of this process could serve as a viable clinical strategy for mitigating silicosis.
基金supported by the National Basic Research Program of China (2014CB542300)the National Natural Science Foundation of China (81602697)+1 种基金the Natural Science Foundation of Jiangsu Province (BE2016737) the Fundamental Research Funds for the Central Universities (020814380070)
文摘Ophiocordyceps sinensis is well known as a traditional Chinese medicine and has widely been used for over 2,000 years to stimulate immune system, decrease blood pressure and to inhibit tumor growth. While miRNAs are increasingly recognized for their roles in post-transcriptional regulation of gene expression in animals and plants, miRNAs in fungi were less studied until the discovery of microRNA-like RNA(milRNA). High-throughput sequencing and bioinformatics approaches were used to identify conserved and novel milRNAs in O. sinensis. 40 conserved milRNAs were identified, while 23 pre-miRNA candidates encoding 31 novel milRNAs were predicted. Furthermore, the potential target genes of milRNAs in human were predicted and gene ontology analysis was applied to these genes. Enrichment analysis of GO-represented biological process showed that target genes of both conserved and novel milRNAs are involved in development, metabolic and immune processes, indicating the potential roles of milRNAs of O. sinensis in pharmacological effects as health food and traditional Chinese medicine. This study is the first report on genome-wide analysis of milRNAs in O. sinensis and it provides a useful resource to further study the potential roles of milRNAs as active components of O. sinensis in health food or traditional Chinese medicine.
基金The authors would like to appreciate the financial support from the Natural Sciences Fund of Zhejiang Province (No. LQ17B010003) and the National Natural Science Foundation of China (NSFC) (No. 11604319).
文摘In this work, we developed a polyaniline (PANI)-coated selenium/carbon nanocomposite encapsulated in graphene sheets (PANI@Se/C-G), with excellent performance in Li-Se batteries. The PANI@Se/C-G nanostructure presents attractive properties as cathode of Li-Se batteries, with a high specific capacity of 588.7 mAh·g^-1 at a 0.2C (1C = 675 mA·g^-1) rate after 200 cycles. Even at a high rate of 2C, a high capacity of 528.6 mAh·g^-1 is obtained after 500 cycles. The excellent cycle stability and rate performance of the PANI@Se/C-G composite can be attributed to the synergistic combination of carbon black (as the conductive matrix for Se) and the double conductive layer comprising the uniform PANI shell and the graphene sheets, which effectively improves the utilization of selenium and significantly enhances the electronic conductivity of the whole electrode.
基金Natural Sciences and Engineering Research Council of Canada(NSERC)Canada Research Chair Program(CRC)+2 种基金Canada Foundation for Innovation(CFI)Ontario Research FundUniversity of Western Ontario。
文摘Recently,sulfide-based solid-state electrolytes(SSEs)have attracted much attention owing to their high ionic conductivity and feasible mechanical features.The environmental stability of sulfide-based SSEs is one of the critical aspects due to the possible decomposition,and ionic conductivity change will affect the fabrication and electrochemical performance of the batteries.Thus,important efforts have been made to reveal and improve their environmental stability,and a timely summary of the progress is urgently needed.In this review,we first clarify the definition of environmental stability and its significance in the context of practical use.After indicating the degradation mechanisms of sulfide-based SSEs,we summarize several effective strategies to improve their stability and also highlight the related theoretical studies.The stability of organic solvents of sulfide SSEs is also summarized and discussed,which may help reliable sulfide SSEs in the battery system.The main target of this review is to gain insights and provide useful guidance to further improve the environmental stability of sulfide SSEs,which will finally promote the commercialization of sulfide-based all-solid-state batteries.
文摘Automated chemical solid-phase synthesis is an automation platform for rapid and reliable synthesis of glycans.Since the seminal work of Automated Glycan Assembly(AGA)disclosed by Seeberger in 2001,AGA has evolved from a proof-of-concept to a robust and reliable technology for streamlined production of various types of glycans.Through more than 20 years of unceasing efforts,the major breakthroughs in AGA including linkers,approved building blocks,and synthesizers have been acquired,and numerous influential achievements have been made in complex glycan synthesis.In addition,the HPLC-assisted automated synthesis emerges as a promising automation platform to access glycans.In this review,we highlight the key advances in the field of automated chemical solid-phase synthesis,especially in AGA.The synthesis of representative glycans based on AGA is also described.
基金supported by the Natural Science Foundation of Beijing Municipality(5232006)the Beijing Academy of Agriculture and Forestry Sciences Special Project on Hi-Tech Innovation Capacity(QNJJ202217 and KJCX20230305).
文摘Drought can greatly impact the biodiversity of an ecosystem and play a crucial role in regulating its functioning.However,the specific mechanisms by which drought mediate the biodiversity effect(BE)on community biomass in above-and belowground through functional traits remain poorly understood.Here,we conducted a common garden experiment in a greenhouse,which included two plant species richness levels and two water addition levels,to analyze the effects of biodiversity on aboveground biomass(AGB),belowground biomass(BGB)and total biomass(TB),and to quantify the relationship between BEs and functional traits under drought conditions.Our analysis focused on partitioning BEs into above-and belowground complementarity effect(CE)and selection effect(SE)at the species level,which allowed us to better understand the impacts of biodiversity on community biomass and the underlying mechanisms.Our results showed that plant species richness stimulated AGB,BGB and TB through CEs.Drought decreased AGB,BGB and TB,simultaneously.In addition,the aboveground CE was positively associated with the variation in plant height.SEs in above-and belowground were negatively correlated with the community mean plant height and root length,respectively.Furthermore,drought weakened the aboveground CE by decreasing variation in plant height,resulting in a reduction in AGB and TB.Our findings demonstrate that the complementarity of species is an important regulator of community biomass in above-and belowground,the dynamics of biomass under environmental stress are associated with the response of sensitive compartments.
文摘The coordinated development of tourism resources and tourism economy is vital improve the quality and efficiency of regional tourism.Taking the ice and snow tourism in Altay region as an example,this study constructed an evaluation indicator system and used the methods of gravity center model,spatial mismatch index model and obstacle degree model to calculate the spatial mismatch index and influencing factors of ice and snow tourism resources and tourism economy in Altay region as a whole and in each county and city.It found in the study period:(i)the ice and snow tourism resources and tourism economy in Altay region was synchronous in the development of time sequence,while the spatial distribution pattern was characterized by regional imbalance;(ii)at the macro scale,the spatial mismatch degree of the ice-snow tourism resource center and the tourism economic center in Altay region was gradually reduced,but they were always separated from the spatial geometric center of Altay region;(iii)at the micro scale,the spatial mismatch index of counties and cities in Altay region was mainly negative mismatch,and the types of spatial mismatch changed in different degrees;(iv)the factors showed certain spatial differentiation characteristics in different counties of Altay region,and there were some differences in the obstacles of different mismatch level areas,and the economic basis was the most frequent obstacle in different mismatch level areas of Altay region.