Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p...Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.展开更多
Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter....Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.展开更多
This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiat...This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.展开更多
Recently,an extreme narrowband spectral response of only 8 nm in electronic-grade diamond-based photodetectors has been observed by Zheng Wei and his colleagues from Sun Yat-sen University for the first time.A charge ...Recently,an extreme narrowband spectral response of only 8 nm in electronic-grade diamond-based photodetectors has been observed by Zheng Wei and his colleagues from Sun Yat-sen University for the first time.A charge collection narrowing mechanism assisted by free exciton radiative recombination is proposed,which well reveals the characteristic spectral response of diamond.展开更多
The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centraliz...The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centralized,inefficient,and bulky during application,which limits its development in the exoskeleton.For improving the robot's performance,its hydraulic actuating system should be optimized further.In this paper a novel hydraulic actuating system(HAS)based on electric-hydrostatic actuator is proposed,which is applied to hip and knee joints.Each HAS integrates an electric servo motor,a high-speed micro pump,a specific tank,and other components into a module.The specific parameters are obtained through relevant simulation according to human motion data and load requirements.The dynamic models of the HAS are built,and validated by the system identification.Experiments of trajectory tracking and human-exoskeleton interaction are carried out,which demonstrate the proposed HAS has the ability to be applied to the exoskeleton.Compared with the previous prototype,the total weight of the HAS in the robot is reduced by about 40%,and the power density is increased by almost 1.6 times.展开更多
The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyze...The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyzed.The research shows that all of Mn elements form theα-Mn pure phases,which do not participate in the formation of other phases,such as theτ-phases.The mechanical properties of Mn-containing alloys in as-extruded and aged states are superior to Mn-free alloys.During the hot extrusion process,the dispersed fineα-Mn particle phase hinders the migration of grain boundaries and inhibits dynamic recrystallization,which mainly takes effect of grain refining and dispersion hardening.During the aging treatments,the dispersed fineα-Mn particle phase not only hinders the growth of the solution-treated grains,but also becomes the nucleation cores ofβ1 rod-like precipitate phase,which is conducive to increasing the nucleation rate of the precipitate phase.For the aged alloy,the Mn addition mainly takes effect of grain refining and promoting aging strengthening.展开更多
Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumptio...Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumption and simple process), that when combined with the unique nature of the versatile allotropes of carbon elements, are creating an electronics revolution. Carbon electronics are greatly advancing with new preparations and sophisticated designs. In this perspective, representatives with various dimensions, e.g., carbon nanotubes, graphene, bulk diamond, and their extraordinary performance, are reviewed. The associated state-of-the-art devices and composite hybrid all-carbon structures are also emphasized to reveal their potential in the electronics field. Advances in commercial production have improved the cost effi-ciency, material quality, and device design, accelerating the promise of carbon materials.展开更多
To maximize the catalytic performance of MoS_(2) in the hydrogen evolution reaction,we investigate the electrocatalytic and photocatalytic performance of monolayer MoS_(2) doped with noble metal(Ag,Au,Cu,Pd,and Pt)usi...To maximize the catalytic performance of MoS_(2) in the hydrogen evolution reaction,we investigate the electrocatalytic and photocatalytic performance of monolayer MoS_(2) doped with noble metal(Ag,Au,Cu,Pd,and Pt)using first principles calculation combined with the climbing image nudged elastic band method.We find the band gap of the monolayer MoS_(2) is reduced significantly by the noble metal doping,which is unfavorable to improving its photocatalytic performance.The optical absorption coefficient shows that the doping does not increase the ability of the monolayer MoS_(2) to absorb visible light.The monolayer MoS_(2) doped with the noble metal is not a potential photocatalyst for the hydrogen evolution reaction because the band edge position of the conduction band minimum is lower than-4.44 eV,the reduction potential of H^(+)/H_(2).Fortunately,the band gap reduction increases the electron transport performance of the monolayer MoS_(2),and the activation energy of water splitting is greatly reduced by the noble metal doping,especially the Pt doping.On the whole,noble metal doping can enhance the electrocatalytic performance of the monolayer MoS_(2).展开更多
The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we develop...The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we developed novel quasi-solid-state CPEs of a Ce-doped Na super ion conductors(NASICON)Na_(1.3+x)Al_(0.3)Ce_(x)Ti_(1.7-x)(PO_(4))_(3)(NCATP) chemically coupled poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)/Li-bis(trifluoromethanes-ulfonyl)imide(LiTFSI) matrix.A strong interaction between Ce^(3+)from NCATP and TFSI-anion from the polymer matrix contributes to the fast Li+transportation at the interface.The PVDF-HFP/NCATP CPEs exhibit an ionic conductivity of 2.16 × 0^(-3) S cm^(-1) and a Li^(+) transference number of 0.88.A symmetric Li/Li cell with NCATP-integrated CPEs at 0.1 mA cm^(-2) presents outstanding cycling stability over 2000 h at 25℃.The quasi-solid-state Li metal batteries of Li/CPEs/LiFePO_(4) at 2 C after 400 cycles and Li/CPEs/LiCoO_(2) at 0.2 C after 120 cycles deliver capacities of 100 and 152 mAh g^(-1) at 25℃,respectively.展开更多
To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),...To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),Zn^(2+),Cd^(2+),Hg^(2+),and Pb^(2+))in wastewater on the monolayer MoS2 sheet through first-principles calculation.Our simulation results show that the monolayer MoS2 sheet is a potential heavy metal adsorption material because of the attractive interaction between them.The most negative adsorption energy determines that the TMo site is the most stable adsorption site for the heavy metal ions.The attractive interaction is considered as chemical adsorption,and it is closely related to charge transfer.The orbital hybridization between S p and heavy metal ions p and d states electrons contributes to the adsorption,except the orbital hybridization between S p and Pb p states electrons contributes to the Pb^(2+) adsorption.All the results show that the monolayer MoS2 sheet is most suitable for removing Ni^(2+) and Cr^(3+) ions from wastewater,followed by Cu^(2+) and Pb^(2+).For the ions Cd^(2+),Zn^(2+),and Hg^(2+),its adsorption strength remains to be improved.展开更多
As a reinforcement technology that improves load-bearing ability and prevents injuries,assisted exoskeleton robots have extensive applications in freight transport and health care.The perception of gait information by...As a reinforcement technology that improves load-bearing ability and prevents injuries,assisted exoskeleton robots have extensive applications in freight transport and health care.The perception of gait information by such robots is vital for their control.This information is the basis for motion planning in assistive and collaborative functions.Here,a wearable gait recognition sensor system for exoskeleton robots is presented.Pressure sensor arrays based on laser-induced graphene are developed with flexibility and reliability.Multiple sensor units are integrated into an insole to detect real-time pressure at key plantar positions.In addition,the circuit hardware and the algorithm are designed to reinforce the sensor system with the capability of gait recognition.The experimental results show that the accuracy of gait recognition by the proposed system is 99.85%,and the effectiveness of the system is further verified through testing on an exoskeleton robot.展开更多
Exchange coupling within nanomagnetism is a rapidly evolving field with significant implications for that plays a crucial role in the development of magnetic nanomaterials.Manipulating exchange coupling interaction en...Exchange coupling within nanomagnetism is a rapidly evolving field with significant implications for that plays a crucial role in the development of magnetic nanomaterials.Manipulating exchange coupling interaction enables the magnetic systems to overcome limitations associated with size-dependent magnetic behavior within nano scale,thereby improving their magnetic properties and providing for superior performance in biomedical applications compared with single-phase magnetic materials.Understanding the underlying mechanism of exchange coupling and its impact on macroscopic magnetic properties is crucial for the design and application of such magnetic materials.This review provides an overview of recent advances in interfacial exchange coupling among different magnetic modalities-ferromagnetism,ferrimagnetism,and antiferromagnetism-based on core-shell magnetic nanoparticles(MNPs).Additionally,this review discusses micromagnetic simulations to gain insights into the relationship between the microscopic magnetic structure(size,shape,composition,and exchange coupling)and the resulting macroscopic properties.The controlled synthesis of MNPs is summarized,including one-step method and two-step method.The precise manipulation of interfacial characteristics is of great importance,albeit challenging,as it allows for the finetuning of magnetic properties tailored for specific applications.The review also explores potential applications of coreshell MNPs in magnetic resonance imaging,hyperthermia therapy,targeted drug delivery,and advanced neuromodulation.展开更多
WE43 alloy was successfully coated with ferrum(Fe)films of varying thicknesses using filtered cathode vacuum arc technology.The physical phase composition,surface morphology,corrosion resistance and mechanical propert...WE43 alloy was successfully coated with ferrum(Fe)films of varying thicknesses using filtered cathode vacuum arc technology.The physical phase composition,surface morphology,corrosion resistance and mechanical properties of the films were extensively investigated.The results demonstrate that a deposition time of 20 min for Fe ions exhibits minimal defects and low surface roughness.Compared to the WE43 substrate,the Fe20 alloy exhibits lower Icorr values at 81μA/cm^(2),indicating enhanced corrosion resistance.Immersion experiments further confirm the superior integrity of the Fe20 film compared to other coated alloys tested.Notably,among all deposited modified alloys,Fe20 demonstrates significantly improved mechanical properties with its hardness and elastic modulus being three times higher than those of WE43,providing better wear resistance.展开更多
Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite ta...Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite tailings(NGT),a liquid-polyacrylonitrile(LPAN)is used to modify the NGT fragments and aggregate them together to form secondary graphite particles with low surface area and high tap density.Moreover,the modified NGT show much better electrochemical performances than those of original one.When tested in full cells coupled with NMC532 cathode,the material achieves a high rate capability and cycle stability at the cutoff voltage of 4.25 V as well as 4.45 V,which maintains 84.32%capacity retention after 500 cycles at 1 C rate(4.25 V),higher than that of the pristine one(73.65%).The enhanced performances can be attributed to the use of LPAN to create a unique carbon layer upon graphite tailings to reconstruct surface and repair defects,and also to granulate an isotropic structure of secondary graphite particles,which can help to weaken the anisotropy of Li^(+)diffusion pathway and form a uniform,complete and stable solid-electrolyte-interface(SEI)on the surface of primary NGT fragments to promote a fast Li+diffusion and suppress lithium metal dendrites upon charge and discharge.展开更多
Materials for radiation detection are critically important and urgently demanded in diverse fields,starting from fundamental scientific research to medical diagnostics,homeland security,and environmental monitoring.Lo...Materials for radiation detection are critically important and urgently demanded in diverse fields,starting from fundamental scientific research to medical diagnostics,homeland security,and environmental monitoring.Lowdimensional halides(LDHs)exhibiting efficient self-trapped exciton(STE)emission with high photoluminescence quantum yield(PLQY)have recently shown a great potential as scintillators.However,an overlooked issue of excitonexciton interaction in LDHs under ionizing radiation hinders the broadening of its radiation detection applications.Here,we demonstrate an exceptional enhancement of exciton-harvesting efficiency in zero-dimensional(0D)Cs_(3)Cu_(2)I_(5):Tl halide single crystals by forming strongly localized Tl-bound excitons.Because of the suppression of nonradiative exciton-exciton interaction,an excellentα/βpulse-shape-discrimination(PSD)figure-of-merit(FoM)factor of 2.64,a superior rejection ratio of 10^(−9),and a high scintillation yield of 26000 photons MeV−1 under 5.49 MeVα-ray are achieved in Cs_(3)Cu_(2)I_(5):Tl single crystals,outperforming the commercial ZnS:Ag/PVT composites for charged particle detection applications.Furthermore,a radiation detector prototype based on Cs_(3)Cu_(2)I_(5):Tl single crystal demonstrates the capability of identifying radioactive 220Rn gas for environmental radiation monitoring applications.We believe that the exciton-harvesting strategy proposed here can greatly boost the applications of LDHs materials.展开更多
This study proposes an accurate dead zone compensation control method for electro-hydrostatic actuators(EHAs)under low-speed conditions.Specifically,the nonlinear dead zone characteristics under low-speed conditions a...This study proposes an accurate dead zone compensation control method for electro-hydrostatic actuators(EHAs)under low-speed conditions.Specifically,the nonlinear dead zone characteristics under low-speed conditions are summarized based on numerous EHA experiments.An adaptive compensation function(ACF)is then constructed for the dead zone.Next,this study proposes an adaptive dead zone compensation control method for EHAs by integrating the ACF with a virtual decomposition controller(VDC)based on the established EHA model.The stability of the proposed control method is also proven.Finally,the proposed control method is verified using an EHA platform.The test results show that the dead zone trajectory tracking errors of EHAs are significantly reduced when combined with the ACF.Furthermore,since most EHAs are controlled by adjusting the motor speed,the method presented in this study is simpler and easier to use than methods that employ flow compensation.展开更多
Ferroptosis,a novel form of programmed cell death,is characterized by iron-dependent lipid peroxidation and has been shown to be involved in multiple diseases,including cancer.Stimulating ferroptosis in cancer cells m...Ferroptosis,a novel form of programmed cell death,is characterized by iron-dependent lipid peroxidation and has been shown to be involved in multiple diseases,including cancer.Stimulating ferroptosis in cancer cells may be a potential strategy for cancer therapy.Therefore,ferroptosis-inducing drugs are attracting more attention for cancer treatment.Here,we showed that erianin,a natural product isolated from Dendrobium chrysotoxum Lindl,exerted its anticancer activity by inducing cell death and inhibiting cell migration in lung cancer cells.Subsequently,we demonstrated for the first time that erianin induced ferroptotic cell death in lung cancer cells,which was accompanied by ROS accumulation,lipid peroxidation,and GSH depletion.The ferroptosis inhibitors Fer-1 and Lip-1 but not Z-VAD-FMK,CQ,or necrostatin-1 rescued erianin-induced cell death,indicating that ferroptosis contributed to erianin-induced cell death.Furthermore,we demonstrated that Ca^(2+)/CaM signaling was a critical mediator of erianin-induced ferroptosis and that blockade of this signaling significantly rescued cell death induced by erianin treatment by suppressing ferroptosis.Taken together,our data suggest that the natural product erianin exerts its anticancer effects by inducing Ca^(2+)/CaMdependent ferroptosis and inhibiting cell migration,and erianin will hopefully serve as a prospective compound for lung cancer treatment.展开更多
In this paper, we review the status of the multifunctional experimental platform at the National Laboratory of High Power Laser and Physics(NLHPLP). The platform, including the SG-II laser facility, SG-II 9th beam, SG...In this paper, we review the status of the multifunctional experimental platform at the National Laboratory of High Power Laser and Physics(NLHPLP). The platform, including the SG-II laser facility, SG-II 9th beam, SG-II upgrade(SG-II UP) facility, and SG-II 5 PW facility, is operational and available for interested scientists studying inertial confinement fusion(ICF) and a broad range of high-energy-density physics. These facilities can provide important experimental capabilities by combining different pulse widths of nanosecond, picosecond, and femtosecond scales. In addition, the SG-II UP facility, consisting of a single petawatt system and an eight-beam nanosecond system, is introduced including several laser technologies that have been developed to ensure the performance of the facility. Recent developments of the SG-II 5 PW facility are also presented.展开更多
In this paper, we report the design of a Monte Carlo simulation for the energy spectrum measurement system based on the ladderabsorption method. Herein, the detector response matrix can be calculated using the detecto...In this paper, we report the design of a Monte Carlo simulation for the energy spectrum measurement system based on the ladderabsorption method. Herein, the detector response matrix can be calculated using the detector responses to several monochromatic X-ray beams. A novel soft X-ray spectrum unfolding method based on the two-step reverse iteration(TSRI) algorithm is applied to acquire the primary spectrum. This paper provides examples of the use of TSRI, and the unfolded energy spectra for the soft Xray beams show excellent agreement with the references. The unfolded energy spectra obtained using the TSRI exhibit better accuracy than those obtained from the commonly used unfolding code GRAVEL.展开更多
基金financial support by National Natural Science Foundation(NNSF)of China(Nos.52202269,52002248,U23B2069,22309162)Shenzhen Science and Technology program(No.20220810155330003)+1 种基金Shenzhen Basic Research Project(No.JCYJ20190808163005631)Xiangjiang Lab(22XJ01007).
文摘Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.
基金the financial support from the National Natural Science Foundation of China(grant numbers 11922507,12050005,52002140)Fundamental Research Funds for the Central Universities(2020kfyXJJS008)+1 种基金Major State Basic Research Development Program of China(2021YFB3201000)Young Elite Scientists Sponsorship Program by CAST
文摘Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.
基金funded by the National Key Research and Development Program of China(no.2020YFC1909604)Shenzhen Key Projects of Technological Research(JSGG20200925145800001)Shenzhen Basic Research Project(no.JCYJ20190808145203535).
文摘This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.
文摘Recently,an extreme narrowband spectral response of only 8 nm in electronic-grade diamond-based photodetectors has been observed by Zheng Wei and his colleagues from Sun Yat-sen University for the first time.A charge collection narrowing mechanism assisted by free exciton radiative recombination is proposed,which well reveals the characteristic spectral response of diamond.
基金Supported by Nati onal Key R&D Program of China(Grant No.2018YFB1305400,2018YFB1305402)National Natural Science Foundation of China(Grant No.518902883)Fun dame ntal Resea rch Funds for the Central Universities(Grant No.2018XZZX001-04).
文摘The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centralized,inefficient,and bulky during application,which limits its development in the exoskeleton.For improving the robot's performance,its hydraulic actuating system should be optimized further.In this paper a novel hydraulic actuating system(HAS)based on electric-hydrostatic actuator is proposed,which is applied to hip and knee joints.Each HAS integrates an electric servo motor,a high-speed micro pump,a specific tank,and other components into a module.The specific parameters are obtained through relevant simulation according to human motion data and load requirements.The dynamic models of the HAS are built,and validated by the system identification.Experiments of trajectory tracking and human-exoskeleton interaction are carried out,which demonstrate the proposed HAS has the ability to be applied to the exoskeleton.Compared with the previous prototype,the total weight of the HAS in the robot is reduced by about 40%,and the power density is increased by almost 1.6 times.
基金funded by National Natural Science Foundation of China(Project No.51701172)Foundation of China Railway Eryuan Engineering Group Co.Ltd.(Project No.KYY2020035(21-21))+1 种基金Natural Science Foundation of Hunan Province(Project No.2018JJ3504)China Postdoctoral Science Foundation(Project No.2018M632977).
文摘The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyzed.The research shows that all of Mn elements form theα-Mn pure phases,which do not participate in the formation of other phases,such as theτ-phases.The mechanical properties of Mn-containing alloys in as-extruded and aged states are superior to Mn-free alloys.During the hot extrusion process,the dispersed fineα-Mn particle phase hinders the migration of grain boundaries and inhibits dynamic recrystallization,which mainly takes effect of grain refining and dispersion hardening.During the aging treatments,the dispersed fineα-Mn particle phase not only hinders the growth of the solution-treated grains,but also becomes the nucleation cores ofβ1 rod-like precipitate phase,which is conducive to increasing the nucleation rate of the precipitate phase.For the aged alloy,the Mn addition mainly takes effect of grain refining and promoting aging strengthening.
基金the National Key Research and Development Program of China(No.2016YFE0133200)National Natural Science Foundation of China(No.52172037)+4 种基金European Union’s Horizon 2020 Research and Innovation Staff Exchange Scheme(No.734578)Post-doctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing(No.2021 BH006)Beijing Municipal Natural Science Foundation(Nos.2212036 and 4192038)Science and Technology Innovation Special Project of Foshan Government(Nos.BK20BE021 and BK21BE004)Special thanks to the nation-al high-level-university sponsored graduate program of China Scholarship Council(CSC),USTB-Monte Biance Joint R&D Center and joint-postdoc research program of Shunde Graduate School of USTB.
文摘Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumption and simple process), that when combined with the unique nature of the versatile allotropes of carbon elements, are creating an electronics revolution. Carbon electronics are greatly advancing with new preparations and sophisticated designs. In this perspective, representatives with various dimensions, e.g., carbon nanotubes, graphene, bulk diamond, and their extraordinary performance, are reviewed. The associated state-of-the-art devices and composite hybrid all-carbon structures are also emphasized to reveal their potential in the electronics field. Advances in commercial production have improved the cost effi-ciency, material quality, and device design, accelerating the promise of carbon materials.
基金the Joint Funds of the National Natural Science Foundation of China(Grant No.U1967212)the National Science and Technology Major Project of China(Grant No.2019XS06004009)the Fundamental Research Funds for the Central Universities(Grant No.2018ZD10).
文摘To maximize the catalytic performance of MoS_(2) in the hydrogen evolution reaction,we investigate the electrocatalytic and photocatalytic performance of monolayer MoS_(2) doped with noble metal(Ag,Au,Cu,Pd,and Pt)using first principles calculation combined with the climbing image nudged elastic band method.We find the band gap of the monolayer MoS_(2) is reduced significantly by the noble metal doping,which is unfavorable to improving its photocatalytic performance.The optical absorption coefficient shows that the doping does not increase the ability of the monolayer MoS_(2) to absorb visible light.The monolayer MoS_(2) doped with the noble metal is not a potential photocatalyst for the hydrogen evolution reaction because the band edge position of the conduction band minimum is lower than-4.44 eV,the reduction potential of H^(+)/H_(2).Fortunately,the band gap reduction increases the electron transport performance of the monolayer MoS_(2),and the activation energy of water splitting is greatly reduced by the noble metal doping,especially the Pt doping.On the whole,noble metal doping can enhance the electrocatalytic performance of the monolayer MoS_(2).
基金the National Key Research and Development Program of China (No. 2020YFC1909604)the Shenzhen Key Projects of Technological Research (JSGG2020092514 5800001)。
文摘The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we developed novel quasi-solid-state CPEs of a Ce-doped Na super ion conductors(NASICON)Na_(1.3+x)Al_(0.3)Ce_(x)Ti_(1.7-x)(PO_(4))_(3)(NCATP) chemically coupled poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)/Li-bis(trifluoromethanes-ulfonyl)imide(LiTFSI) matrix.A strong interaction between Ce^(3+)from NCATP and TFSI-anion from the polymer matrix contributes to the fast Li+transportation at the interface.The PVDF-HFP/NCATP CPEs exhibit an ionic conductivity of 2.16 × 0^(-3) S cm^(-1) and a Li^(+) transference number of 0.88.A symmetric Li/Li cell with NCATP-integrated CPEs at 0.1 mA cm^(-2) presents outstanding cycling stability over 2000 h at 25℃.The quasi-solid-state Li metal batteries of Li/CPEs/LiFePO_(4) at 2 C after 400 cycles and Li/CPEs/LiCoO_(2) at 0.2 C after 120 cycles deliver capacities of 100 and 152 mAh g^(-1) at 25℃,respectively.
基金This work was supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1967212)the National Science and Technology Major Project of China(Grant No.2019XS06004009)the Fundamental Research Funds for the Central Universities(Grant No.2018ZD10).
文摘To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),Zn^(2+),Cd^(2+),Hg^(2+),and Pb^(2+))in wastewater on the monolayer MoS2 sheet through first-principles calculation.Our simulation results show that the monolayer MoS2 sheet is a potential heavy metal adsorption material because of the attractive interaction between them.The most negative adsorption energy determines that the TMo site is the most stable adsorption site for the heavy metal ions.The attractive interaction is considered as chemical adsorption,and it is closely related to charge transfer.The orbital hybridization between S p and heavy metal ions p and d states electrons contributes to the adsorption,except the orbital hybridization between S p and Pb p states electrons contributes to the Pb^(2+) adsorption.All the results show that the monolayer MoS2 sheet is most suitable for removing Ni^(2+) and Cr^(3+) ions from wastewater,followed by Cu^(2+) and Pb^(2+).For the ions Cd^(2+),Zn^(2+),and Hg^(2+),its adsorption strength remains to be improved.
基金supported by the STI 2030—Major Projects(2022ZD0208601)the National Natural Science Foundation of China(52305077,52105593)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(LDQ24E050001)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2023C01051,2023C03007).
文摘As a reinforcement technology that improves load-bearing ability and prevents injuries,assisted exoskeleton robots have extensive applications in freight transport and health care.The perception of gait information by such robots is vital for their control.This information is the basis for motion planning in assistive and collaborative functions.Here,a wearable gait recognition sensor system for exoskeleton robots is presented.Pressure sensor arrays based on laser-induced graphene are developed with flexibility and reliability.Multiple sensor units are integrated into an insole to detect real-time pressure at key plantar positions.In addition,the circuit hardware and the algorithm are designed to reinforce the sensor system with the capability of gait recognition.The experimental results show that the accuracy of gait recognition by the proposed system is 99.85%,and the effectiveness of the system is further verified through testing on an exoskeleton robot.
基金supported by the Fundamental Research Funds for the Central Universities(226-2022-00208)the National Natural Science Foundation of China(52373230)+1 种基金the State Key Laboratory of Clean Energy Utilization(109203*A62303/022)the Magnetic DNA Origami:Design,Construction,and Biomedical Application of Nanorobots(209209-J32301ZJ).
文摘Exchange coupling within nanomagnetism is a rapidly evolving field with significant implications for that plays a crucial role in the development of magnetic nanomaterials.Manipulating exchange coupling interaction enables the magnetic systems to overcome limitations associated with size-dependent magnetic behavior within nano scale,thereby improving their magnetic properties and providing for superior performance in biomedical applications compared with single-phase magnetic materials.Understanding the underlying mechanism of exchange coupling and its impact on macroscopic magnetic properties is crucial for the design and application of such magnetic materials.This review provides an overview of recent advances in interfacial exchange coupling among different magnetic modalities-ferromagnetism,ferrimagnetism,and antiferromagnetism-based on core-shell magnetic nanoparticles(MNPs).Additionally,this review discusses micromagnetic simulations to gain insights into the relationship between the microscopic magnetic structure(size,shape,composition,and exchange coupling)and the resulting macroscopic properties.The controlled synthesis of MNPs is summarized,including one-step method and two-step method.The precise manipulation of interfacial characteristics is of great importance,albeit challenging,as it allows for the finetuning of magnetic properties tailored for specific applications.The review also explores potential applications of coreshell MNPs in magnetic resonance imaging,hyperthermia therapy,targeted drug delivery,and advanced neuromodulation.
基金Project supported by the National Natural Science Foundation of China(52271117)the Educational Commission of Hunan Province of China(23A0107)+1 种基金the High Technology Research and Development Program of Hunan Province of China(2022GK4038)the Research Development and Research Fund of Zhuhai People's Hospital(zh2017001)。
文摘WE43 alloy was successfully coated with ferrum(Fe)films of varying thicknesses using filtered cathode vacuum arc technology.The physical phase composition,surface morphology,corrosion resistance and mechanical properties of the films were extensively investigated.The results demonstrate that a deposition time of 20 min for Fe ions exhibits minimal defects and low surface roughness.Compared to the WE43 substrate,the Fe20 alloy exhibits lower Icorr values at 81μA/cm^(2),indicating enhanced corrosion resistance.Immersion experiments further confirm the superior integrity of the Fe20 film compared to other coated alloys tested.Notably,among all deposited modified alloys,Fe20 demonstrates significantly improved mechanical properties with its hardness and elastic modulus being three times higher than those of WE43,providing better wear resistance.
基金the financial support of National Key Research and Development Program of China(No.2020YFC1909604)National Natural Science Foundation(NNSF)of China(Nos.52202269,52002248)+1 种基金Shenzhen Key Projects of Technological Research(No.JSGG20200925145800001)and Shenzhen Basic Research Project(Nos.JCYJ20190808145203535,JCYJ20190808163005631)for providing financial support for this work.We are also grateful to the Instrumental Analysis Center of Shenzhen University(Xili Campus)for providing the facilities for our material analyzes。
文摘Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite tailings(NGT),a liquid-polyacrylonitrile(LPAN)is used to modify the NGT fragments and aggregate them together to form secondary graphite particles with low surface area and high tap density.Moreover,the modified NGT show much better electrochemical performances than those of original one.When tested in full cells coupled with NMC532 cathode,the material achieves a high rate capability and cycle stability at the cutoff voltage of 4.25 V as well as 4.45 V,which maintains 84.32%capacity retention after 500 cycles at 1 C rate(4.25 V),higher than that of the pristine one(73.65%).The enhanced performances can be attributed to the use of LPAN to create a unique carbon layer upon graphite tailings to reconstruct surface and repair defects,and also to granulate an isotropic structure of secondary graphite particles,which can help to weaken the anisotropy of Li^(+)diffusion pathway and form a uniform,complete and stable solid-electrolyte-interface(SEI)on the surface of primary NGT fragments to promote a fast Li+diffusion and suppress lithium metal dendrites upon charge and discharge.
基金the following fundings for support:National Key R&D Program of China(2022YFB3503600)National Natural Science Foundation of China(11975303,12211530561,12305211)+3 种基金Shanghai Municipal Natural Science Foundation(20ZR1473900,21TS1400100)CAS Cooperative Research Project(121631KYSB20210017)CAS Project for Young Scientist in Basic Research(YSBR-024)Partial support received from OP Research,Development,and Education financed by European Structural and Investment Funds,(Czech MEYS project No.SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760).
文摘Materials for radiation detection are critically important and urgently demanded in diverse fields,starting from fundamental scientific research to medical diagnostics,homeland security,and environmental monitoring.Lowdimensional halides(LDHs)exhibiting efficient self-trapped exciton(STE)emission with high photoluminescence quantum yield(PLQY)have recently shown a great potential as scintillators.However,an overlooked issue of excitonexciton interaction in LDHs under ionizing radiation hinders the broadening of its radiation detection applications.Here,we demonstrate an exceptional enhancement of exciton-harvesting efficiency in zero-dimensional(0D)Cs_(3)Cu_(2)I_(5):Tl halide single crystals by forming strongly localized Tl-bound excitons.Because of the suppression of nonradiative exciton-exciton interaction,an excellentα/βpulse-shape-discrimination(PSD)figure-of-merit(FoM)factor of 2.64,a superior rejection ratio of 10^(−9),and a high scintillation yield of 26000 photons MeV−1 under 5.49 MeVα-ray are achieved in Cs_(3)Cu_(2)I_(5):Tl single crystals,outperforming the commercial ZnS:Ag/PVT composites for charged particle detection applications.Furthermore,a radiation detector prototype based on Cs_(3)Cu_(2)I_(5):Tl single crystal demonstrates the capability of identifying radioactive 220Rn gas for environmental radiation monitoring applications.We believe that the exciton-harvesting strategy proposed here can greatly boost the applications of LDHs materials.
基金Supported by National Natural Science Foundation of China(Grant Nos.51890883,U2141209)1912 Project Foundation。
文摘This study proposes an accurate dead zone compensation control method for electro-hydrostatic actuators(EHAs)under low-speed conditions.Specifically,the nonlinear dead zone characteristics under low-speed conditions are summarized based on numerous EHA experiments.An adaptive compensation function(ACF)is then constructed for the dead zone.Next,this study proposes an adaptive dead zone compensation control method for EHAs by integrating the ACF with a virtual decomposition controller(VDC)based on the established EHA model.The stability of the proposed control method is also proven.Finally,the proposed control method is verified using an EHA platform.The test results show that the dead zone trajectory tracking errors of EHAs are significantly reduced when combined with the ACF.Furthermore,since most EHAs are controlled by adjusting the motor speed,the method presented in this study is simpler and easier to use than methods that employ flow compensation.
基金supported by grants from the National Natural Science Foundation of China(grant Nos.81672932,81730108,81874380,and 81973635)the Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(grant No.LR18H160001)+1 种基金the Zhejiang Province Science and Technology Project of TCM(grant No.2019ZZ016)the Open Project Program of the Jiangsu Key Laboratory of Pharmacology and Safety Evaluation of Chinese Materia Medica(No.JKLPSE201807).
文摘Ferroptosis,a novel form of programmed cell death,is characterized by iron-dependent lipid peroxidation and has been shown to be involved in multiple diseases,including cancer.Stimulating ferroptosis in cancer cells may be a potential strategy for cancer therapy.Therefore,ferroptosis-inducing drugs are attracting more attention for cancer treatment.Here,we showed that erianin,a natural product isolated from Dendrobium chrysotoxum Lindl,exerted its anticancer activity by inducing cell death and inhibiting cell migration in lung cancer cells.Subsequently,we demonstrated for the first time that erianin induced ferroptotic cell death in lung cancer cells,which was accompanied by ROS accumulation,lipid peroxidation,and GSH depletion.The ferroptosis inhibitors Fer-1 and Lip-1 but not Z-VAD-FMK,CQ,or necrostatin-1 rescued erianin-induced cell death,indicating that ferroptosis contributed to erianin-induced cell death.Furthermore,we demonstrated that Ca^(2+)/CaM signaling was a critical mediator of erianin-induced ferroptosis and that blockade of this signaling significantly rescued cell death induced by erianin treatment by suppressing ferroptosis.Taken together,our data suggest that the natural product erianin exerts its anticancer effects by inducing Ca^(2+)/CaMdependent ferroptosis and inhibiting cell migration,and erianin will hopefully serve as a prospective compound for lung cancer treatment.
基金supported by International Partnership Program of Chinese Academy of Sciences(No.181231KYSB20170022)the Key Projects of International Cooperation in Chinese Academy of Sciences
文摘In this paper, we review the status of the multifunctional experimental platform at the National Laboratory of High Power Laser and Physics(NLHPLP). The platform, including the SG-II laser facility, SG-II 9th beam, SG-II upgrade(SG-II UP) facility, and SG-II 5 PW facility, is operational and available for interested scientists studying inertial confinement fusion(ICF) and a broad range of high-energy-density physics. These facilities can provide important experimental capabilities by combining different pulse widths of nanosecond, picosecond, and femtosecond scales. In addition, the SG-II UP facility, consisting of a single petawatt system and an eight-beam nanosecond system, is introduced including several laser technologies that have been developed to ensure the performance of the facility. Recent developments of the SG-II 5 PW facility are also presented.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875120,11505060,and 11435010)the Beijing Nova Program(Grant No.xx2018057)+1 种基金the Fund of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(Grant No.SKLIPR1810)the Fundamental Research Funds for the Central Universities(Grant No.2018YQ01)
文摘In this paper, we report the design of a Monte Carlo simulation for the energy spectrum measurement system based on the ladderabsorption method. Herein, the detector response matrix can be calculated using the detector responses to several monochromatic X-ray beams. A novel soft X-ray spectrum unfolding method based on the two-step reverse iteration(TSRI) algorithm is applied to acquire the primary spectrum. This paper provides examples of the use of TSRI, and the unfolded energy spectra for the soft Xray beams show excellent agreement with the references. The unfolded energy spectra obtained using the TSRI exhibit better accuracy than those obtained from the commonly used unfolding code GRAVEL.