Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the me...Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.展开更多
Lithosphere extension and upwelling of asthenosphere at post-collisional stage of an orogenic cycle generally induce diverse magmatism and/or associated high-temperature metamorphism. Nevertheless, the intimate coexis...Lithosphere extension and upwelling of asthenosphere at post-collisional stage of an orogenic cycle generally induce diverse magmatism and/or associated high-temperature metamorphism. Nevertheless, the intimate coexistence of post-collisional magmatic activity and high-temperature metamorphism is rare.In this contribution, a lithological assemblage composing of diverse magmatic rocks deriving from distinct magma sources and coeval high-temperature metamorphism was identified in eastern Kunlun.Petrography, ages, mineral chemistry and whole-rock geochemistry demonstrated that those intimately coexistent diverse rocks were genetically related to post-collisional extension. The garnet-bearing mafic granulites in Jinshuikou area interior of the East Kunlun Orogenic Belt are mainly composed of garnet,orthopyroxene, and plagioclase, with peak metamorphic P–T conditions of ~ 701–756 ℃and 5.6–7.0 kbar,representing a granulite-facies metamorphism at 409.7 ± 1.7 Ma. The diverse contemporaneous magmatic rocks including hornblendites, gabbros and granites yield zircon U–Pb ages of 408.6 ± 2.5 Ma,413.4 ± 4.6 Ma, and 387–407 Ma, respectively. The hornblendites show N-MORB-like REE patterns with(La/Sm)Nvalues of 0.85–0.94. They have positive zircon εHf(t) values of 0.1–4.9 and whole-rock εNd(t) values of 3.9–4.7 but relatively high(^(87)Sr/^(86)Sr)_(i)values of 0.7081 to 0.7088. These features demonstrate that the hornblendites derived from a depleted asthenospheric mantle source with minor continental crustal materials in source. As for the gabbros, they exhibit arc-like elemental signatures, low zircon εHf(t) values(-4.3 to 2.5) and variable whole-rock εNd(t) values(-4.9 to 1.2) as well as high(^(87)Sr/86 Sr)ivalues(0.7068 to 0.7126), arguing for that they were originated from partial melting of heterogeneous lithospheric mantle anteriorly metasomatized by subducted-sediment released melts. Geochemistry of the granites defines their strongly peraluminous S-type signatures. Zircons from the granites yield a large range of εHf(t) values ranging from -30.8 to -5.1, while the whole-rock samples yield consistent(^(87)Sr/86 Sr)ivalues(0.7301 to 0.7342) and negative εNd(t) values(-10.1 to -12.4). These features indicate that the S-type granites could be generated by reworking of an ancient crust. Taken together, the penecontemporaneous magmatism and metamorphic event, demonstrated the early-middle Devonian transition from crustal thickening to extensional collapse. The post-collisional mantle-derived magmas serve as an essential driving force for the high-temperature granulite-facies metamorphism and anataxis of the crust associated with formation of S-type granite. This study not only constructs a more detail Proto-Tethys evolution process of the eastern Kunlun, but also sheds new light on better understanding the intimate relationship between magmatism and metamorphism during post-collisional extensional collapse.展开更多
Biochemical or clinical changes of hyperandrogenism are important elements of polycystic ovary syndrome (PCOS). There is currently no consensus on the definition and diagnostic criteria of hyperandrogenism in PCOS. ...Biochemical or clinical changes of hyperandrogenism are important elements of polycystic ovary syndrome (PCOS). There is currently no consensus on the definition and diagnostic criteria of hyperandrogenism in PCOS. The aim of this study was to investigate the complex symptoms of hyperandrogenic disorders and the correlations between metabolism and hyperandrogenism in patients with PCOS from an outpatient reproductive medicine clinic in China. We conducted a case control study of 125 PCOS patients and 130 controls to evaluate differences in body mass index (BMI), total testosterone (TT), modified Ferriman-Gallwey hirsutism score, sex hormone binding globulin (SHBG), homeostasis model assessment-estimated insulin resistance (HOMA-IR) and free androgen index (FAI) between PCOS patients and controls and subgroups of PCOS. The prevalence of acne and hirsutism did not differ significantly between the hyperandrogenic and non-hyperandrogenic subgroup. Patients with signs of hyper- androgenism had significantly higher BMI (P 〈 0.05), but differences in TT, SHBG, FAI and waist/hip ratio were insignificant. The odds ratio of overweight was calculated for all PCOS patients. Our results suggest that PCOS patients with high BMI tend to have functional disorders of androgen excess; therefore, BMI may be a strong pre-dictor of hyperandrogenism in PCOS.展开更多
Accurate estimates of forest aboveground biomass(AGB)are essential for global carbon cycle studies and have widely relied on approaches using spectral and structural information of forest canopies extracted from vario...Accurate estimates of forest aboveground biomass(AGB)are essential for global carbon cycle studies and have widely relied on approaches using spectral and structural information of forest canopies extracted from various remote sensing datasets.However,combining the advantages of active and passive data sources to improve estimation accuracy remains challenging.Here,we proposed a new approach for forest AGB modeling based on allometric relationships and using the form of power-law to integrate structural and spectral information.Over 60 km^(2) of drone light detection and ranging(LiDAR)data and 1,370 field plot measurements,covering the four major forest types of China(coniferous forest,sub-tropical broadleaf forest,coniferous and broadleaf-leaved mixed forest,and tropical broadleaf forest),were collected together with Sentinel-2 images to evaluate the proposed approach.The results show that the most universally useful structural and spectral metrics are the average values of canopy height and spectral index rather than their maximum values.Compared with structural attributes used alone,combining structural and spectral information can improve the estimation accuracy of AGB,increasing R^(2) by about 10%and reducing the root mean square error by about 22%;the accuracy of the proposed approach can yield a R^(2) of 0.7 in different forests types.The proposed approach performs the best in coniferous forest,followed by sub-tropical broadleaf forest,coniferous and broadleaf-leaved mixed forest,and then tropical broadleaf forest.Furthermore,the simple linear regression used in the proposed method is less sensitive to sample size and outperforms statistically multivariate machine learning-based regression models such as stepwise multiple regression,artificial neural networks,and Random Forest.The proposed approach may provide an alternative solution to map large-scale forest biomass using space-borne LiDAR and optical images with high accuracy.展开更多
Lithium (Li) metal batteries have attracted much attention owing to its ultra-high energy density.However,as important part of Li metal batteries,Li anodes still face many challenges,mainly including uncontrolled dend...Lithium (Li) metal batteries have attracted much attention owing to its ultra-high energy density.However,as important part of Li metal batteries,Li anodes still face many challenges,mainly including uncontrolled dendritic Li formation,dramatical volume variation and serious pulverization.Herein,manganese dioxide (MnO_(2)) nanosheet modified nitrogen (N),phosphorus (P) co-doping carbon nanofibers(NPC) on carbon cloth (CC)(MnO_(2)@NPC-CC) is successfully fabricated through electrodeposition approach and further treated with Li by the molten-infusion method to prepare Li based Mn@NPC-CC(Li-Mn@NPC-CC) electrode.The synergy of MnO_(2) and NPC obviously increases the reaction rate between MnO_(2)@NPC-CC and Li and guides even Li distribution over infusion process.Additionally,theoretical calculation,simulation and experimental results further indicate that N,P,Mn multi-doping effectively improves the superior lithiophilicity of Li-Mn@NPC-CC,which induces uniform Li deposition/dissolution to suppress dendrite growth over cycles.Moreover,conductive and porous NPC matrix not only effectively improves the stability of Li-Mn@NPC-CC,but also provides abundant spaces to accelerate the transfer of ion/electron and buffer electrode dimension variation during cycling.Hence,Li-Mn@NPC-CC-based symmetric cells exhibit extra-long cycling life (over 2200 h) with small hysteresis of 20 mV.When the LiMn@NPC-CC anode couples with air,Li iron phosphate (LiFePO_(4)),or hard carbon (C) cathode,the assembled full cells exhibit outstanding performance with low hysteresis and stable cycling properties.Especially,the corresponding pouch-typed Li–air cells also exhibit good performance at different bending angles and even power a series of electronic devices.展开更多
Grasslands are one of the largest coupled human-nature terrestrial ecosystems on Earth,and severe anthropogenic-induced grassland ecosystem function declines have been reported recently.Understanding factors influenci...Grasslands are one of the largest coupled human-nature terrestrial ecosystems on Earth,and severe anthropogenic-induced grassland ecosystem function declines have been reported recently.Understanding factors influencing grassland ecosystem functions is critical for making sustainable management policies.Canopy structure is an important factor influencing plant growth through mediating within-canopy microclimate(e.g.,light,water,and wind),and it is found coordinating tightly with plant species diversity to influence forest ecosystem functions.However,the role of canopy structure in regulating grassland ecosystem functions along with plant species diversity has been rarely investigated.Here,we investigated this problem by collecting field data from 170 field plots distributed along an over 2000 km transect across the northern agro-pastoral ecotone of China.Aboveground net primary productivity(ANPP)and resilience,two indicators of grassland ecosystem functions,were measured from field data and satellite remote sensing data.Terrestrial laser scanning data were collected to measure canopy structure(represented by mean height and canopy cover).Our results showed that plant species diversity was positively correlated to canopy structural traits,and negatively correlated to human activity intensity.Canopy structure was a significant indicator for ANPP and resilience,but their correlations were inconsistent under different human activity intensity levels.Compared to plant species diversity,canopy structural traits were better indicators for grassland ecosystem functions,especially for ANPP.Through structure equation modeling analyses,we found that plant species diversity did not have a direct influence on ANPP under human disturbances.Instead,it had a strong indirect effect on ANPP by altering canopy structural traits.As to resilience,plant species diversity had both a direct positive contribution and an indirect contribution through mediating canopy cover.This study highlights that canopy structure is an important intermediate factor regulating grassland diversity-function relationships under human disturbances,which should be included in future grassland monitoring and management.展开更多
Summary What is already known about this topic?Neutralization levels induced by inactivated vaccines rapidly wane after primary immunization,and a homologous booster can recall specific immune memory,resulting in a re...Summary What is already known about this topic?Neutralization levels induced by inactivated vaccines rapidly wane after primary immunization,and a homologous booster can recall specific immune memory,resulting in a remarkable increase in antibody concentration.The optimal interval between primary and booster doses has yet to be determined.展开更多
Background:Endogenous electric fields(EFs)play an essential role in guiding the coordinated collective migration of epidermal cells to the wound centre during wound healing.Although polarization of leadercells is esse...Background:Endogenous electric fields(EFs)play an essential role in guiding the coordinated collective migration of epidermal cells to the wound centre during wound healing.Although polarization of leadercells is essential for collective migration,the signal mechanisms responsible for the EF-induced polarization of leader cells under electrotactic collective migration remain unclear.This study aims to determine how the leader cells are polarized and coordinated during EF-guided collective migration of epidermal cell sheets.Methods:Collective migration of the human epidermal monolayer(human immortalized ker-atinocytes HaCaT)under EFs was observed via time-lapse microscopy.The involvement of tetraspanin-29(CD9)in EF-induced fibrous actin(F-actin)polarization of leader cells as well as electrotactic migration of the epidermal monolayer was evaluated by genetic manipulation.Blocking,rescue and co-culture experiments were conducted to explore the downstream signalling of CD9.Results:EFs guided the coordinated collective migration of the epithelial monolayer to the anode,with dynamic formation of pseudopodia in leader cells at the front edge of the monolayer along the direction of migration.F-actin polarization,as expected,played an essential role in pseudopod formation in leader cells under EFs.By confocal microscopy,we found that CD9 was colocalized with F-actin on the cell surface and was particularly downregulated in leader cells by EFs.Interestingly,genetic overexpression of CD9 abolished EF-induced F-actin polarization in leader cells as well as collective migration in the epidermal monolayer.Mechanistically,CD9 determined the polarization of F-actin in leader cells by downregulating a disintegrin and metalloprotease 17/heparin-binding epidermal growth factor-like growth factor/epidermal growth factor receptor(ADAM17/HB-EGF/EGFR)signalling.The abolished polarization of leader cells due to CD9 overex-pression could be restored in a co-culture monolayer where normal cells and CD9-overexpressing cells were mixed;however,this restoration was eliminated again by the addition of the HB-EGF-neutralizing antibody.Conclusion:CD9 functions as a key regulator in the EF-guided collective migration of the epidermal monolayer by controlling and coordinating the polarization of leader cells through ADAM17/HB-EGF/EGFR signalling.展开更多
Monolayer transition metal dichalcogenides(TMDCs) with the 1 T0 structure are a new class of large-gap two-dimensional(2 D) topological insulators, hosting topologically protected conduction channels on the edges. How...Monolayer transition metal dichalcogenides(TMDCs) with the 1 T0 structure are a new class of large-gap two-dimensional(2 D) topological insulators, hosting topologically protected conduction channels on the edges. However, the 1 T0 phase is metastable compared to the 2 H phase for most of 2 D TMDCs, among which the 1 T0 phase is least favored in monolayer MoS2. Here we report a clean and controllable technique to locally induce nanometer-sized 1 T0 phase in monolayer 2 H-MoS2 via a weak Argon-plasma treatment,resulting in topological phase boundaries of high density. We found that the stabilization of 1 T0 phase arises from the concerted effects of S vacancies and the tensile strain. Scanning tunneling spectroscopy(STS) clearly reveals a spin-orbit band gap(~60 meV) and topologically protected in-gap states residing at the 1 T0-2 H phase boundary, which are corroborated by density-functional theory(DFT) calculations.The strategy developed in this work can be generalized to a large variety of TMDCs materials, with potentials to realize scalable electronics and spintronics with low dissipation.展开更多
Carbon fiber reinforced polymer(CFRP)materials are important reinforcing substances which are widely used in the shear strengthening of seismic-damage steel reinforced concrete(SRC)frame structures.To investigate the ...Carbon fiber reinforced polymer(CFRP)materials are important reinforcing substances which are widely used in the shear strengthening of seismic-damage steel reinforced concrete(SRC)frame structures.To investigate the shear strength of SRC frame columns strengthened with CFRP sheets,experimental observations on eight seismic?damaged SRC frame columns strengthened with CFRP sheets were conducted at Yangtze University and existing experimental data of 49 SRC columns are presented.Based on the existing experiments,the theories of damage degree,zoning analysis of concrete,and strengthening material of the column are adopted.To present the expression formula of the shear strength of SRC frame columns strengthened with CFRP sheets,the contributions of strengthening material and transverse reinforcement to shear strength in the truss model are considered,based on the truss-arch model.The contribution of arch action is also considered through the analysis of the whole concrete and that of the three zones of the concrete are also considered.The formula is verified,and the calculated results are found to match well with the experimental results.Results indicate that the proposed whole analysis model can improve the accuracy of shear strength predictions of shear seismic-damaged SRC frame columns reinforced with CFRP sheets.展开更多
Lithium(Li)-O_(2)batteries have triggered worldwide interest due to their ultrahigh theoretical energy density.However,it is a long shot for the grand-scale applications of Li-O_(2)battery at current stage owing to it...Lithium(Li)-O_(2)batteries have triggered worldwide interest due to their ultrahigh theoretical energy density.However,it is a long shot for the grand-scale applications of Li-O_(2)battery at current stage owing to its significant polarization,inferior cycling life,and irreversible decomposition of Li2O_(2).Herein,a facile way of preparing the highly dispersed Co-based nanoparticles encapsulated into porous N-doping carbon polyhedral with the low content of Ru modification(LRu@HDCo-NC)is explored through the pyrolysis of Co/Zn based zeolitic imidazole frameworks(ZIFs)containing Ru-based ligands.Even with the very small amount of Ru introduction(1.8%),LRu@HDCo-NC still exhibits the superior oxygen evolution reaction/oxygen reduction reaction(OER/ORR)performance and also inhibits side reactions in Li-O_(2)battery because of the abundant pores,plentiful surface N heteroatoms,and highly dispersed metal-based sites which are induced by the volatilization of Zn,and conductive/stable carbon skeleton derived from ZIFs.When applied in Li-O_(2)batteries,LRu@HDCo-NC cathode delivers a high discharge capacity of 15,973 mAh·g^(-1)at 200 mA·g^(-1),good capacity retention at higher rate(12,362 mAh·g^(-1)at 500 mA·g^(-1))and outstanding stability for>300 cycles with low voltage polarization of<2.3 V under a cut-off capacity of 1,000 mAh·g^(-1)at 500 mA·g^(-1).More critically,a series of ex situ and in situ characterization technologies disclose that the LRu@HDCo-NC cathodes can effectively promote the reversible reactions in Li-O_(2)batteries.展开更多
Canopy structural complexity is a critical emergent forest attribute,and light detection and ranging(lidar)-based fractal dimension has been recognized as its powerful measure at the individual tree level.However,the ...Canopy structural complexity is a critical emergent forest attribute,and light detection and ranging(lidar)-based fractal dimension has been recognized as its powerful measure at the individual tree level.However,the current lidar-based estimation method is highly sensitive to data characteristics,and its scalability from individual trees to forest stands remains unclear.This study proposed an improved method to estimate fractal dimension from lidar data by considering Shannon entropy,and evaluated its scalability from individual trees to forest stands through mathematical derivations.Moreover,a total of 280 forest stand scenes simulated from the terrestrial lidar data of 115 trees spanning large variability in canopy structural complexity were used to evaluate the robustness of the proposed method and the scalability of fractal dimension.The results show that the proposed method can significantly improve the robustness of lidar-derived fractal dimensions.Both mathematical derivations and experimental analyses demonstrate that the fractal dimension of a forest stand is equal to that of the tree with the largest fractal dimension in it,manifesting its nonscalability from individual trees to forest stands.The nonscalability of fractal dimension reveals its limited capability in canopy structural complexity quantification and indicates that the power-law scaling theory of a forest stand underlying fractal geometry is determined by its dominant tree instead of the entire community.Nevertheless,we believe that fractal dimension is still a useful indicator of canopy structural complexity at the individual tree level and might be used along with other stand-level indexes to reflect the“tree-to-stand”correlation of canopy structural complexity.展开更多
基金supported by the National Natural Science Foundation of China (41731281,42071078)the National Key Basic Research Program of China (No.2012CB026104)Science and Technology Project of Qinghai,China (2021-GX-121).
文摘Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.
基金supported by the Fundamental Research Funds for the Central Universities(No.2019B00414)Open Fund of the Key Laboratory of Marine Geology and Environment Chinese Academy of Sciences(No.MGE2020KG03)the PHD early development program of East China University of Technology(No.DHBK2018035)。
文摘Lithosphere extension and upwelling of asthenosphere at post-collisional stage of an orogenic cycle generally induce diverse magmatism and/or associated high-temperature metamorphism. Nevertheless, the intimate coexistence of post-collisional magmatic activity and high-temperature metamorphism is rare.In this contribution, a lithological assemblage composing of diverse magmatic rocks deriving from distinct magma sources and coeval high-temperature metamorphism was identified in eastern Kunlun.Petrography, ages, mineral chemistry and whole-rock geochemistry demonstrated that those intimately coexistent diverse rocks were genetically related to post-collisional extension. The garnet-bearing mafic granulites in Jinshuikou area interior of the East Kunlun Orogenic Belt are mainly composed of garnet,orthopyroxene, and plagioclase, with peak metamorphic P–T conditions of ~ 701–756 ℃and 5.6–7.0 kbar,representing a granulite-facies metamorphism at 409.7 ± 1.7 Ma. The diverse contemporaneous magmatic rocks including hornblendites, gabbros and granites yield zircon U–Pb ages of 408.6 ± 2.5 Ma,413.4 ± 4.6 Ma, and 387–407 Ma, respectively. The hornblendites show N-MORB-like REE patterns with(La/Sm)Nvalues of 0.85–0.94. They have positive zircon εHf(t) values of 0.1–4.9 and whole-rock εNd(t) values of 3.9–4.7 but relatively high(^(87)Sr/^(86)Sr)_(i)values of 0.7081 to 0.7088. These features demonstrate that the hornblendites derived from a depleted asthenospheric mantle source with minor continental crustal materials in source. As for the gabbros, they exhibit arc-like elemental signatures, low zircon εHf(t) values(-4.3 to 2.5) and variable whole-rock εNd(t) values(-4.9 to 1.2) as well as high(^(87)Sr/86 Sr)ivalues(0.7068 to 0.7126), arguing for that they were originated from partial melting of heterogeneous lithospheric mantle anteriorly metasomatized by subducted-sediment released melts. Geochemistry of the granites defines their strongly peraluminous S-type signatures. Zircons from the granites yield a large range of εHf(t) values ranging from -30.8 to -5.1, while the whole-rock samples yield consistent(^(87)Sr/86 Sr)ivalues(0.7301 to 0.7342) and negative εNd(t) values(-10.1 to -12.4). These features indicate that the S-type granites could be generated by reworking of an ancient crust. Taken together, the penecontemporaneous magmatism and metamorphic event, demonstrated the early-middle Devonian transition from crustal thickening to extensional collapse. The post-collisional mantle-derived magmas serve as an essential driving force for the high-temperature granulite-facies metamorphism and anataxis of the crust associated with formation of S-type granite. This study not only constructs a more detail Proto-Tethys evolution process of the eastern Kunlun, but also sheds new light on better understanding the intimate relationship between magmatism and metamorphism during post-collisional extensional collapse.
基金financially supported by the National Natural Science Foundation of China(21476145)the National 973 Program of Ministry of Sciences and Technologies of China(2011CB201202)
基金supported by grants from the Major State Basic Research Development Program of China(973 Program:No.2012CB944902 and No.2012CB944703)the National Natural Science Foundation of China(No.30801236)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Biochemical or clinical changes of hyperandrogenism are important elements of polycystic ovary syndrome (PCOS). There is currently no consensus on the definition and diagnostic criteria of hyperandrogenism in PCOS. The aim of this study was to investigate the complex symptoms of hyperandrogenic disorders and the correlations between metabolism and hyperandrogenism in patients with PCOS from an outpatient reproductive medicine clinic in China. We conducted a case control study of 125 PCOS patients and 130 controls to evaluate differences in body mass index (BMI), total testosterone (TT), modified Ferriman-Gallwey hirsutism score, sex hormone binding globulin (SHBG), homeostasis model assessment-estimated insulin resistance (HOMA-IR) and free androgen index (FAI) between PCOS patients and controls and subgroups of PCOS. The prevalence of acne and hirsutism did not differ significantly between the hyperandrogenic and non-hyperandrogenic subgroup. Patients with signs of hyper- androgenism had significantly higher BMI (P 〈 0.05), but differences in TT, SHBG, FAI and waist/hip ratio were insignificant. The odds ratio of overweight was calculated for all PCOS patients. Our results suggest that PCOS patients with high BMI tend to have functional disorders of androgen excess; therefore, BMI may be a strong pre-dictor of hyperandrogenism in PCOS.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA19050401)the National Natural Science Foundation of China(41871332,31971575,41901358).
文摘Accurate estimates of forest aboveground biomass(AGB)are essential for global carbon cycle studies and have widely relied on approaches using spectral and structural information of forest canopies extracted from various remote sensing datasets.However,combining the advantages of active and passive data sources to improve estimation accuracy remains challenging.Here,we proposed a new approach for forest AGB modeling based on allometric relationships and using the form of power-law to integrate structural and spectral information.Over 60 km^(2) of drone light detection and ranging(LiDAR)data and 1,370 field plot measurements,covering the four major forest types of China(coniferous forest,sub-tropical broadleaf forest,coniferous and broadleaf-leaved mixed forest,and tropical broadleaf forest),were collected together with Sentinel-2 images to evaluate the proposed approach.The results show that the most universally useful structural and spectral metrics are the average values of canopy height and spectral index rather than their maximum values.Compared with structural attributes used alone,combining structural and spectral information can improve the estimation accuracy of AGB,increasing R^(2) by about 10%and reducing the root mean square error by about 22%;the accuracy of the proposed approach can yield a R^(2) of 0.7 in different forests types.The proposed approach performs the best in coniferous forest,followed by sub-tropical broadleaf forest,coniferous and broadleaf-leaved mixed forest,and then tropical broadleaf forest.Furthermore,the simple linear regression used in the proposed method is less sensitive to sample size and outperforms statistically multivariate machine learning-based regression models such as stepwise multiple regression,artificial neural networks,and Random Forest.The proposed approach may provide an alternative solution to map large-scale forest biomass using space-borne LiDAR and optical images with high accuracy.
基金funding support from the National Natural Science Foundation of China (21905151 and 51772162)the Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (2019KJC004)+1 种基金the Outstanding Youth Foundation of Shandong Province, China (ZR2019JQ14)the Taishan Scholar Young Talent Program, Major Scientific and Technological Innovation Project (2019JZZY020405)。
文摘Lithium (Li) metal batteries have attracted much attention owing to its ultra-high energy density.However,as important part of Li metal batteries,Li anodes still face many challenges,mainly including uncontrolled dendritic Li formation,dramatical volume variation and serious pulverization.Herein,manganese dioxide (MnO_(2)) nanosheet modified nitrogen (N),phosphorus (P) co-doping carbon nanofibers(NPC) on carbon cloth (CC)(MnO_(2)@NPC-CC) is successfully fabricated through electrodeposition approach and further treated with Li by the molten-infusion method to prepare Li based Mn@NPC-CC(Li-Mn@NPC-CC) electrode.The synergy of MnO_(2) and NPC obviously increases the reaction rate between MnO_(2)@NPC-CC and Li and guides even Li distribution over infusion process.Additionally,theoretical calculation,simulation and experimental results further indicate that N,P,Mn multi-doping effectively improves the superior lithiophilicity of Li-Mn@NPC-CC,which induces uniform Li deposition/dissolution to suppress dendrite growth over cycles.Moreover,conductive and porous NPC matrix not only effectively improves the stability of Li-Mn@NPC-CC,but also provides abundant spaces to accelerate the transfer of ion/electron and buffer electrode dimension variation during cycling.Hence,Li-Mn@NPC-CC-based symmetric cells exhibit extra-long cycling life (over 2200 h) with small hysteresis of 20 mV.When the LiMn@NPC-CC anode couples with air,Li iron phosphate (LiFePO_(4)),or hard carbon (C) cathode,the assembled full cells exhibit outstanding performance with low hysteresis and stable cycling properties.Especially,the corresponding pouch-typed Li–air cells also exhibit good performance at different bending angles and even power a series of electronic devices.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA26010101,XDA23080301).
文摘Grasslands are one of the largest coupled human-nature terrestrial ecosystems on Earth,and severe anthropogenic-induced grassland ecosystem function declines have been reported recently.Understanding factors influencing grassland ecosystem functions is critical for making sustainable management policies.Canopy structure is an important factor influencing plant growth through mediating within-canopy microclimate(e.g.,light,water,and wind),and it is found coordinating tightly with plant species diversity to influence forest ecosystem functions.However,the role of canopy structure in regulating grassland ecosystem functions along with plant species diversity has been rarely investigated.Here,we investigated this problem by collecting field data from 170 field plots distributed along an over 2000 km transect across the northern agro-pastoral ecotone of China.Aboveground net primary productivity(ANPP)and resilience,two indicators of grassland ecosystem functions,were measured from field data and satellite remote sensing data.Terrestrial laser scanning data were collected to measure canopy structure(represented by mean height and canopy cover).Our results showed that plant species diversity was positively correlated to canopy structural traits,and negatively correlated to human activity intensity.Canopy structure was a significant indicator for ANPP and resilience,but their correlations were inconsistent under different human activity intensity levels.Compared to plant species diversity,canopy structural traits were better indicators for grassland ecosystem functions,especially for ANPP.Through structure equation modeling analyses,we found that plant species diversity did not have a direct influence on ANPP under human disturbances.Instead,it had a strong indirect effect on ANPP by altering canopy structural traits.As to resilience,plant species diversity had both a direct positive contribution and an indirect contribution through mediating canopy cover.This study highlights that canopy structure is an important intermediate factor regulating grassland diversity-function relationships under human disturbances,which should be included in future grassland monitoring and management.
文摘Summary What is already known about this topic?Neutralization levels induced by inactivated vaccines rapidly wane after primary immunization,and a homologous booster can recall specific immune memory,resulting in a remarkable increase in antibody concentration.The optimal interval between primary and booster doses has yet to be determined.
基金supported by the National Natural Science Foundation of China(NSFCNo.82272285,NSFC No.82002048 and NSFC No.82072172)the Scientific Research Project of Chongqing(CSTB2022BSXM-JCX0010).
文摘Background:Endogenous electric fields(EFs)play an essential role in guiding the coordinated collective migration of epidermal cells to the wound centre during wound healing.Although polarization of leadercells is essential for collective migration,the signal mechanisms responsible for the EF-induced polarization of leader cells under electrotactic collective migration remain unclear.This study aims to determine how the leader cells are polarized and coordinated during EF-guided collective migration of epidermal cell sheets.Methods:Collective migration of the human epidermal monolayer(human immortalized ker-atinocytes HaCaT)under EFs was observed via time-lapse microscopy.The involvement of tetraspanin-29(CD9)in EF-induced fibrous actin(F-actin)polarization of leader cells as well as electrotactic migration of the epidermal monolayer was evaluated by genetic manipulation.Blocking,rescue and co-culture experiments were conducted to explore the downstream signalling of CD9.Results:EFs guided the coordinated collective migration of the epithelial monolayer to the anode,with dynamic formation of pseudopodia in leader cells at the front edge of the monolayer along the direction of migration.F-actin polarization,as expected,played an essential role in pseudopod formation in leader cells under EFs.By confocal microscopy,we found that CD9 was colocalized with F-actin on the cell surface and was particularly downregulated in leader cells by EFs.Interestingly,genetic overexpression of CD9 abolished EF-induced F-actin polarization in leader cells as well as collective migration in the epidermal monolayer.Mechanistically,CD9 determined the polarization of F-actin in leader cells by downregulating a disintegrin and metalloprotease 17/heparin-binding epidermal growth factor-like growth factor/epidermal growth factor receptor(ADAM17/HB-EGF/EGFR)signalling.The abolished polarization of leader cells due to CD9 overex-pression could be restored in a co-culture monolayer where normal cells and CD9-overexpressing cells were mixed;however,this restoration was eliminated again by the addition of the HB-EGF-neutralizing antibody.Conclusion:CD9 functions as a key regulator in the EF-guided collective migration of the epidermal monolayer by controlling and coordinating the polarization of leader cells through ADAM17/HB-EGF/EGFR signalling.
基金financially supported by the National Natural Science Foundation of China (11888101, 11634001, 11834017 and 61888102)the National Key R&D Program (2016YFA0300901 and 2017YFA0205003)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDB28000000 and XDB30000000)Beijing Municipal Science & Technology Commissionsupport from National Science Fund for Distinguished Young Scholars (21725302)Cheung Kong Young Scholar Program
文摘Monolayer transition metal dichalcogenides(TMDCs) with the 1 T0 structure are a new class of large-gap two-dimensional(2 D) topological insulators, hosting topologically protected conduction channels on the edges. However, the 1 T0 phase is metastable compared to the 2 H phase for most of 2 D TMDCs, among which the 1 T0 phase is least favored in monolayer MoS2. Here we report a clean and controllable technique to locally induce nanometer-sized 1 T0 phase in monolayer 2 H-MoS2 via a weak Argon-plasma treatment,resulting in topological phase boundaries of high density. We found that the stabilization of 1 T0 phase arises from the concerted effects of S vacancies and the tensile strain. Scanning tunneling spectroscopy(STS) clearly reveals a spin-orbit band gap(~60 meV) and topologically protected in-gap states residing at the 1 T0-2 H phase boundary, which are corroborated by density-functional theory(DFT) calculations.The strategy developed in this work can be generalized to a large variety of TMDCs materials, with potentials to realize scalable electronics and spintronics with low dissipation.
基金The experiments by Peng et al.[2]were carried out in the Civil Engineering Experiment Center of Yangtze University,China.This research was funded by the National Natural Science Foundation of China(Grant Nos.5147804851678457),Natural Science Foundation of Hubei Province(Innovation group)of China(No.2015CFA029)and their support is gratefully acknowledged.
文摘Carbon fiber reinforced polymer(CFRP)materials are important reinforcing substances which are widely used in the shear strengthening of seismic-damage steel reinforced concrete(SRC)frame structures.To investigate the shear strength of SRC frame columns strengthened with CFRP sheets,experimental observations on eight seismic?damaged SRC frame columns strengthened with CFRP sheets were conducted at Yangtze University and existing experimental data of 49 SRC columns are presented.Based on the existing experiments,the theories of damage degree,zoning analysis of concrete,and strengthening material of the column are adopted.To present the expression formula of the shear strength of SRC frame columns strengthened with CFRP sheets,the contributions of strengthening material and transverse reinforcement to shear strength in the truss model are considered,based on the truss-arch model.The contribution of arch action is also considered through the analysis of the whole concrete and that of the three zones of the concrete are also considered.The formula is verified,and the calculated results are found to match well with the experimental results.Results indicate that the proposed whole analysis model can improve the accuracy of shear strength predictions of shear seismic-damaged SRC frame columns reinforced with CFRP sheets.
基金The authors acknowledge funding support from the National Natural Science Foundation of China(Nos.21905151 and 51772162)Youth Innovation and Technology Foundation of Shandong Higher Education Institutions,China(No.2019KJC004)+2 种基金Outstanding Youth Foundation of Shandong Province,China(No.ZR2019JQ14)Taishan Scholar Young Talent Program,Major Scientific and Technological Innovation Project(No.2019JZZY020405)the Postdoctoral Science Foundation of China(No.2019M652499).
文摘Lithium(Li)-O_(2)batteries have triggered worldwide interest due to their ultrahigh theoretical energy density.However,it is a long shot for the grand-scale applications of Li-O_(2)battery at current stage owing to its significant polarization,inferior cycling life,and irreversible decomposition of Li2O_(2).Herein,a facile way of preparing the highly dispersed Co-based nanoparticles encapsulated into porous N-doping carbon polyhedral with the low content of Ru modification(LRu@HDCo-NC)is explored through the pyrolysis of Co/Zn based zeolitic imidazole frameworks(ZIFs)containing Ru-based ligands.Even with the very small amount of Ru introduction(1.8%),LRu@HDCo-NC still exhibits the superior oxygen evolution reaction/oxygen reduction reaction(OER/ORR)performance and also inhibits side reactions in Li-O_(2)battery because of the abundant pores,plentiful surface N heteroatoms,and highly dispersed metal-based sites which are induced by the volatilization of Zn,and conductive/stable carbon skeleton derived from ZIFs.When applied in Li-O_(2)batteries,LRu@HDCo-NC cathode delivers a high discharge capacity of 15,973 mAh·g^(-1)at 200 mA·g^(-1),good capacity retention at higher rate(12,362 mAh·g^(-1)at 500 mA·g^(-1))and outstanding stability for>300 cycles with low voltage polarization of<2.3 V under a cut-off capacity of 1,000 mAh·g^(-1)at 500 mA·g^(-1).More critically,a series of ex situ and in situ characterization technologies disclose that the LRu@HDCo-NC cathodes can effectively promote the reversible reactions in Li-O_(2)batteries.
基金This study is supported by the Frontier Science Key Programs of the Chinese Academy of Sciences(QYZDY-SSW-SMC011)the National Natural Science Foundation of China(41871332,31971575,and 41901358)。
文摘Canopy structural complexity is a critical emergent forest attribute,and light detection and ranging(lidar)-based fractal dimension has been recognized as its powerful measure at the individual tree level.However,the current lidar-based estimation method is highly sensitive to data characteristics,and its scalability from individual trees to forest stands remains unclear.This study proposed an improved method to estimate fractal dimension from lidar data by considering Shannon entropy,and evaluated its scalability from individual trees to forest stands through mathematical derivations.Moreover,a total of 280 forest stand scenes simulated from the terrestrial lidar data of 115 trees spanning large variability in canopy structural complexity were used to evaluate the robustness of the proposed method and the scalability of fractal dimension.The results show that the proposed method can significantly improve the robustness of lidar-derived fractal dimensions.Both mathematical derivations and experimental analyses demonstrate that the fractal dimension of a forest stand is equal to that of the tree with the largest fractal dimension in it,manifesting its nonscalability from individual trees to forest stands.The nonscalability of fractal dimension reveals its limited capability in canopy structural complexity quantification and indicates that the power-law scaling theory of a forest stand underlying fractal geometry is determined by its dominant tree instead of the entire community.Nevertheless,we believe that fractal dimension is still a useful indicator of canopy structural complexity at the individual tree level and might be used along with other stand-level indexes to reflect the“tree-to-stand”correlation of canopy structural complexity.