Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model...Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system.展开更多
The distribution patterns of rare earth elements(REEs)in fine-grained materials in various depositions were often found to be similar to those of the aeolian sediments deposited in the Loess Plateau in North China and...The distribution patterns of rare earth elements(REEs)in fine-grained materials in various depositions were often found to be similar to those of the aeolian sediments deposited in the Loess Plateau in North China and the fine-grained materials were suggested to be derived from wind-blown dust.However,increasing evidence indicated that the REEs in the water-soluble portion of atmospheric depositions also displayed similar patterns to those of aeolian sediments.In this study,water-soluble REEs in three atmospheric depositions collected from different climatic zones in China were adsorbed with two adsorbents with distinct adsorption capacity,glass powder,and co-precipitated iron hydroxide.The results showed that the REEs adsorbed by the two adsorbents displayed patterns similar to those of the original atmospheric depositions.The typical characteristics of the REE patterns of atmospheric deposition can be well reproduced in the adsorbed REEs.The higher the REE concentrations in the atmospheric depositions,or the higher adsorption efficiency of the adsorbents,the better reproducibility of the REEs patterns.The results suggest that the REEs of the fine-grained materials in various sediments,which have a high adsorption capacity,especially those deposited in South China,may come from the water-soluble REEs in atmospheric deposition,and may not be appropriate tracers of wind-blown dust from North China.展开更多
High-voltage direct current(HVDC)transmission is playing an increasingly important role in modern power systems,and the resulted power/voltage stability issue has raised widespread concern.This paper presents an on-li...High-voltage direct current(HVDC)transmission is playing an increasingly important role in modern power systems,and the resulted power/voltage stability issue has raised widespread concern.This paper presents an on-line power/voltage stability index(PVSI)for multi-infeed HVDC(MIDC)systems.Different from the existing indices which are developed mainly for off-line and static analysis,the proposed PVSI can be applied in real time.Effects of system changes on stability assessment such as change of system states and control strategies are considered.Thus,helpful guidance can be provided for on-line HVDC stability and controls.The PVSI is originally deduced for single-infeed HVDC systems in an‘‘AC way’’by analyzing the power and voltage stability of both pure AC systems and HVDC systems.Moreover,its on-line application in practical MIDC systems is realized by building an equivalent single-infeed model,and utilizing nowadays measurement and communication infrastructures such as wide-area measurement system(WAMS).The effectiveness of the PVSI is verified through simulations in real-time digital simulator(RTDS).展开更多
Due to the high penetration of renewable distributed generation(RDG),many issues have become conspicuous during the intentional island operation such as the power mismatch of load shedding during the transition proces...Due to the high penetration of renewable distributed generation(RDG),many issues have become conspicuous during the intentional island operation such as the power mismatch of load shedding during the transition process and the power imbalance during the restoration process.In this paper,a phase measurement unit(PMU)based online load shedding strategy and a conservation voltage reduction(CVR)based multi-period restoration strategy are proposed for the intentional island with RDG.The proposed load shedding strategy,which is driven by the blackout event,consists of the load shedding optimization and correction table.Before the occurrence of the large-scale blackout,the load shedding optimization is solved periodically to obtain the optimal load shedding plan,which meets the dynamic and steady constraints.When the blackout occurs,the correction table updated in real time based on the PMU data is used to modify the load shedding plan to eliminate the power mismatch caused by the fluctuation of RDG.After the system transits to the intentional island seamlessly,multi-period restoration plans are generated to optimize the restoration performance while maintaining power balance until the main grid is repaired.Besides,CVR technology is implemented to restore more loads by regulating load demand.The proposed load shedding optimization and restoration optimization are linearized to mixed-integer quadratic constraint programming(MIQCP)models.The effectiveness of the proposed strategies is verified with the modified IEEE 33-node system on the real-time digital simulation(RTDS)platform.展开更多
With the rapid increase of distributed photovoltaic(PV) power integrating into the distribution network(DN), the critical issues such as PV power curtailment and low equipment utilization rate have been caused by PV p...With the rapid increase of distributed photovoltaic(PV) power integrating into the distribution network(DN), the critical issues such as PV power curtailment and low equipment utilization rate have been caused by PV power fluctuations. DN has less controllable equipment to manage the PV power fluctuation. To smooth the power fluctuations and further improve the utilization of PV, the regulation ability from the demandside needs to be excavated. This study presents a continuous control method of the feeder load power in a DN based on the voltage regulation to respond to the rapid fluctuation of the PV power output. PV power fluctuations will be directly reflected in the point of common coupling(PCC), and the power fluctuation rate of PCCs is an important standard of PV curtailment.Thus, a demand-side management strategy based on model predictive control(MPC) to mitigate the PCC power fluctuation is proposed. In pre-scheduling, the intraday optimization model is established to solve the reference power of PCC. In real-time control, the pre-scheduling results and MPC are used for the rolling optimization to control the feeder load demand. Finally,the data from the field measurements in Guangzhou, China are used to verify the effectiveness of the proposed strategy in smoothing fluctuations of the distributed PV power.展开更多
Continued expansion of the power grid and the increasing proportion of wind power centralized integration leads to requirements in sharing both energy and reserves among multiple areas under a hierarchical control str...Continued expansion of the power grid and the increasing proportion of wind power centralized integration leads to requirements in sharing both energy and reserves among multiple areas under a hierarchical control structure,which successively requires a correction between schedule plans within multi-time scale.In order to address this problem,this paper develops an information integration method integrating complicated relationships among fuel cost,total thermal power output,reserve capacity,owned reserves and expectations of load shedding and wind curtailment,into three types of time-related relationship curves・Furthermore,a multi-time scale tieline energy and reserves allocation model is proposed,which contains two levels in the control structure,two time scales in dispatch sequence and multiple areas integrated within wind farms as scheduling objects・The efficiency of the proposed method is tested in a 9-bus test system and IEEE 118-bus system.The results show that a cross-regional control center is able to approach the optimal scheduling results of the whole system with the integrated uploaded relationship curves.The proposed model not only relieves energy and reserve shortages in partial areas but also allocates them to more urgent need areas in a high effectivity manner in both day-ahead and intraday time scales.展开更多
基金supported by the National Natural Science Foundation of China(Grant number 51977154)。
文摘Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 41473093 and 41271212)。
文摘The distribution patterns of rare earth elements(REEs)in fine-grained materials in various depositions were often found to be similar to those of the aeolian sediments deposited in the Loess Plateau in North China and the fine-grained materials were suggested to be derived from wind-blown dust.However,increasing evidence indicated that the REEs in the water-soluble portion of atmospheric depositions also displayed similar patterns to those of aeolian sediments.In this study,water-soluble REEs in three atmospheric depositions collected from different climatic zones in China were adsorbed with two adsorbents with distinct adsorption capacity,glass powder,and co-precipitated iron hydroxide.The results showed that the REEs adsorbed by the two adsorbents displayed patterns similar to those of the original atmospheric depositions.The typical characteristics of the REE patterns of atmospheric deposition can be well reproduced in the adsorbed REEs.The higher the REE concentrations in the atmospheric depositions,or the higher adsorption efficiency of the adsorbents,the better reproducibility of the REEs patterns.The results suggest that the REEs of the fine-grained materials in various sediments,which have a high adsorption capacity,especially those deposited in South China,may come from the water-soluble REEs in atmospheric deposition,and may not be appropriate tracers of wind-blown dust from North China.
基金supported in part by the National Key Research and Development Program of China(No.2016YFB0900100)part by the National Natural Science Foundation of China(No.51577136)part by the Natural Science Foundation of Hubei Province,China(No.2018CFA080).
文摘High-voltage direct current(HVDC)transmission is playing an increasingly important role in modern power systems,and the resulted power/voltage stability issue has raised widespread concern.This paper presents an on-line power/voltage stability index(PVSI)for multi-infeed HVDC(MIDC)systems.Different from the existing indices which are developed mainly for off-line and static analysis,the proposed PVSI can be applied in real time.Effects of system changes on stability assessment such as change of system states and control strategies are considered.Thus,helpful guidance can be provided for on-line HVDC stability and controls.The PVSI is originally deduced for single-infeed HVDC systems in an‘‘AC way’’by analyzing the power and voltage stability of both pure AC systems and HVDC systems.Moreover,its on-line application in practical MIDC systems is realized by building an equivalent single-infeed model,and utilizing nowadays measurement and communication infrastructures such as wide-area measurement system(WAMS).The effectiveness of the PVSI is verified through simulations in real-time digital simulator(RTDS).
基金This work was supported in part by the National Key R&D Program of China(No.2017YFB0902900)the National Natural Science Foundation of China(No.51707136)the Natural Science Foundation of Hubei Province(No.2018CFA080).
文摘Due to the high penetration of renewable distributed generation(RDG),many issues have become conspicuous during the intentional island operation such as the power mismatch of load shedding during the transition process and the power imbalance during the restoration process.In this paper,a phase measurement unit(PMU)based online load shedding strategy and a conservation voltage reduction(CVR)based multi-period restoration strategy are proposed for the intentional island with RDG.The proposed load shedding strategy,which is driven by the blackout event,consists of the load shedding optimization and correction table.Before the occurrence of the large-scale blackout,the load shedding optimization is solved periodically to obtain the optimal load shedding plan,which meets the dynamic and steady constraints.When the blackout occurs,the correction table updated in real time based on the PMU data is used to modify the load shedding plan to eliminate the power mismatch caused by the fluctuation of RDG.After the system transits to the intentional island seamlessly,multi-period restoration plans are generated to optimize the restoration performance while maintaining power balance until the main grid is repaired.Besides,CVR technology is implemented to restore more loads by regulating load demand.The proposed load shedding optimization and restoration optimization are linearized to mixed-integer quadratic constraint programming(MIQCP)models.The effectiveness of the proposed strategies is verified with the modified IEEE 33-node system on the real-time digital simulation(RTDS)platform.
基金supported by the National Natural Science Foundation of China (No. U2066601)。
文摘With the rapid increase of distributed photovoltaic(PV) power integrating into the distribution network(DN), the critical issues such as PV power curtailment and low equipment utilization rate have been caused by PV power fluctuations. DN has less controllable equipment to manage the PV power fluctuation. To smooth the power fluctuations and further improve the utilization of PV, the regulation ability from the demandside needs to be excavated. This study presents a continuous control method of the feeder load power in a DN based on the voltage regulation to respond to the rapid fluctuation of the PV power output. PV power fluctuations will be directly reflected in the point of common coupling(PCC), and the power fluctuation rate of PCCs is an important standard of PV curtailment.Thus, a demand-side management strategy based on model predictive control(MPC) to mitigate the PCC power fluctuation is proposed. In pre-scheduling, the intraday optimization model is established to solve the reference power of PCC. In real-time control, the pre-scheduling results and MPC are used for the rolling optimization to control the feeder load demand. Finally,the data from the field measurements in Guangzhou, China are used to verify the effectiveness of the proposed strategy in smoothing fluctuations of the distributed PV power.
基金supported in part by the Science and Technology Project of Central Branch of SGCC(SGHZ0000DKJS 1900228)in part by the National Natural Science Foundation of China(51707136).
文摘Continued expansion of the power grid and the increasing proportion of wind power centralized integration leads to requirements in sharing both energy and reserves among multiple areas under a hierarchical control structure,which successively requires a correction between schedule plans within multi-time scale.In order to address this problem,this paper develops an information integration method integrating complicated relationships among fuel cost,total thermal power output,reserve capacity,owned reserves and expectations of load shedding and wind curtailment,into three types of time-related relationship curves・Furthermore,a multi-time scale tieline energy and reserves allocation model is proposed,which contains two levels in the control structure,two time scales in dispatch sequence and multiple areas integrated within wind farms as scheduling objects・The efficiency of the proposed method is tested in a 9-bus test system and IEEE 118-bus system.The results show that a cross-regional control center is able to approach the optimal scheduling results of the whole system with the integrated uploaded relationship curves.The proposed model not only relieves energy and reserve shortages in partial areas but also allocates them to more urgent need areas in a high effectivity manner in both day-ahead and intraday time scales.